15 Discrete-Time Modulation

Solutions to
 Recommended Problems

$\mathbf{S 1 5 . 1}$
Recall that the Fourier transform of a train of impulses $p(t)$ is $P(\omega)$, as shown in Figure S15.1-1.

Since $x_{p}(t)=x(t) p(t)$,

$$
X_{p}(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\theta) P(\omega-\theta) d \theta
$$

by the modulation property. Thus, $X_{p}(\omega)$ is composed of repeated versions of $X(\omega)$ centered at $2 \pi k / T$ for an integer k and scaled by $1 / T$, as shown in Figure S15.1-2.

Figure S15.1-2
Since $X_{r}(\omega)=X_{p}(\omega) H(\omega)$, it is as indicated in Figure S15.1-3.

Figure S15.1-3
Thus

$$
X_{r}(\omega)=\frac{1}{T} X(\omega) \quad \text { or } \quad x_{p}=\frac{1}{T} x(t)
$$

For $\Omega_{0}=\pi / 2, C(\Omega)$ is given as in Figure S15.2-1.

Figure S15.2-1
By the modulation theorem,

$$
\mathcal{F}\{x[n] c[n]\}=\mathcal{F}\{y[n]\}=Y(\Omega)=\frac{1}{2 \pi} \int_{2 \pi} C(\theta) X(\Omega-\theta) d \theta
$$

Thus, $Y(\Omega)$ is $X(\Omega)$ centered on each impulse in Figure S15.2-1 and scaled by $\frac{1}{2}$, as shown in Figure S15.2-2.

For $\Omega_{0},=\pi / 4, C(\Omega)$ is given as in Figure S15.2-3.

Figure S15.2-3
Thus, $Y(\Omega)$ in this case is as shown in Figure S15.2-4.

Figure S15.2-4

S15.3
From the lecture we know that the system in Figure S15.3-1 is equivalent to a filter with response centered at $\Omega=\pi$, as shown in Figure S15.3-2.

Figure S15.3-1

Figure S15.3-2
Therefore, the total response is the sum of $H^{\prime}(\Omega)$ and $H(\Omega)$, shown in Figure S15.3-3.

Figure S15.3-3

As an example, consider $x[n]$ with Fourier transform $X(\Omega)$ as in Figure S15.3-4.

Figure S15.3-4
Then, after multiplication by $(-1)^{n}$, the resulting signal has the Fourier transform given in Figure S15.3-5.

Figure S15.3-5
After filtering by $H(\Omega)$, the resulting signal has the spectrum given in Figure S15.3-6.

Finally, multiplying by $(-1)^{n}$ again yields the spectrum in Figure S15.3-7.

Figure S15.3-7

Thus, the spectrum of $y[n]$ is given by the sum of the spectrum in Figure S15.3-8 and $X(\Omega)$, as shown in Figure S15.3-8.

Figure S15.3-8
(a) $P(\Omega)$ is composed of impulses spaced at $2 \pi / N$, where N is the period of the sequence. In this case $N=2$. The amplitude is $2 \pi a_{k}$:

$$
\begin{aligned}
a_{k} & =\frac{1}{2} \sum_{n=0}^{1} p[n] e^{-j(2 \pi k n / 2)} \\
& =\frac{1}{2}\left[1 e^{-j(2 \pi k 0 / 2)}+0 e^{-j(2 \pi k 1 / 2)}\right]=\frac{1}{2}
\end{aligned}
$$

Thus, $P(\Omega)$ is as shown in Figure $\mathrm{S} 15.4-1$.

Figure S15.4-1
We now perform the periodic convolution of $X(\Omega)$ with $P(\Omega)$ and scale by $1 /(2 \pi)$ to obtain the spectrum in Figure S15.4-2.

Figure S15.4-2
(b) To recover $x[n]$ from $y[n]$, we can filter $y[n]$ with $H(\Omega)$ given as in Figure S15.4-3.

(c) Using $p[n]$ we can send only every other sample of $x_{1}[n]$. Similarly, we can send every other sample of $x_{2}[n]$ and interleave them over one channel. Note, however, that we can do this only because $X(\Omega)$ is bandlimited to less than $\pi / 2$.

S15.5
We note that $s(t)$ is a periodic signal. Therefore, $S(\omega)$ is composed of impulses centered at $(2 \pi k) / T$ for integer k. The impulse at $\omega=0$ has area given by $2 \pi a_{0}$, where a_{0} is the zeroth Fourier series coefficient of $s(t)$:

$$
a_{0}=\frac{1}{T} \int_{T} s(t) d t=\int_{-\Delta / 2}^{\Delta / 2} 1 d t=\frac{\Delta}{T}
$$

Thus, $S(\omega)$ is as shown in Figure S15.5-1.

The Fourier transform of $x(t) s(t)$, denoted by $R(\omega)$, is given by

$$
R(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\theta) S(\omega-\theta) d \theta=\sum_{n=-\infty}^{\infty} a_{n} X\left(\omega-\frac{2 \pi n}{T}\right)
$$

If $X(\omega)=0$ for $|\omega|>\pi / T$, then $R(\omega)$ will equal $(\Delta / T) X(\omega)$ in the region $|\omega|<\pi / T$. Therefore, for $H(\omega)$ as in Figure S15.5-2, the signal $y(t)=x(t)$.

Figure S15.5-2

Solutions to
 Optional Problems

S15.6
(a) Consider the labeling of the system in Figure S15.6.

Figure S15.6

$$
\begin{aligned}
& r[n]=\phi_{1}[n] x[n] \\
& v[n]=\sum_{k=-\infty}^{\infty} r[k] h[n-k]=\sum_{k=-\infty}^{\infty} \phi_{1}[k] x[k] h[n-k] \\
& y[n]=v[n] \phi_{2}[n]=\phi_{2}[n] \sum_{k=-\infty}^{\infty} h[n-k] \phi_{1}[k] x[k]
\end{aligned}
$$

Suppose $x_{1}[n]=\alpha x[n]$. Then

$$
y_{1}[n]=\phi_{2}[n] \sum_{k=-\infty}^{\infty} h[n-k] \phi_{1}[k] \alpha x[k]=\alpha y[n]
$$

Now let $x_{2}[n]=x_{1}[n]+x_{0}[n]$. Then

$$
y_{2}[n]=\phi_{2}[n] \sum_{k=-\infty}^{\infty} h[n-k] \phi_{1}[k]\left(x_{1}[k]+x_{0}[k]\right)=y_{1}[n]+y_{0}[n]
$$

and the system is linear.

If $\phi_{1}[n]=\delta[n]$, then

$$
y[n]=\phi_{2}[n] \sum_{k=-\infty}^{\infty} h[n-k] \delta[k] x[k]=\phi_{2}[n] h[n] x[0]
$$

If $x[n]$ is shifted so $x_{1}[n]=x[n-1]$, then

$$
y_{1}[n]=\phi_{2}[n] h[n] x_{1}[0]=\phi_{2}[n] h[n] x[-1] \neq y[n-1]
$$

and the system is not time-invariant.
(b) From part (a),

$$
y[n]=z^{n} \sum_{k=-\infty}^{\infty} h[n-k] z^{-k} x[k]
$$

Let $x[n-m]=x_{1}[n]$. Then

$$
y_{1}[n]=z^{n} \sum_{k=-\infty}^{\infty} h[n-k] z^{-k} x_{1}[k]=z^{n} \sum_{k=-\infty}^{\infty} h[n-k] z^{-k} x[k-m]
$$

Let $p=k-m, k=p+m$. Then

$$
\begin{aligned}
y_{1}[n] & =z^{n} \sum_{p=-\infty}^{\infty} h[(n-m)-p] z^{-p-m} x[p] \\
& =z^{n-m} \sum_{p=-\infty}^{\infty} h[(n-m)-p] z^{-p} x[p] \\
& =y[n-m]
\end{aligned}
$$

Therefore, the system is time-invariant.

In general, $w(t)$ is recoverable from $w_{p}(t)$ if $W_{p}(\omega)$ contains repeated versions of $W(\omega)$ that do not overlap, i.e., that have no aliasing, as shown in Figure S15.7.

Figure S15.7
Since $W(\omega)$ is repeated with period $2 \pi / T$, the largest frequency component of $W(\omega)$, ω_{c}, must be less than or equal to π / T. From the modulation property,

$$
W(\omega)=\frac{1}{2 \pi} X(\omega) * X_{2}(\omega)
$$

Thus, since the length of a convolution of two signals is the sum of the individual lengths,

$$
\omega_{c}=\omega_{1}+\omega_{2}
$$

From the preceding observations,

$$
\frac{\pi}{T}>\omega_{1}+\omega_{2} \quad \text { or } \quad T<\frac{\pi}{\omega_{1}+\omega_{2}}
$$

S15.8
(a) If $\alpha_{1}=-\Omega_{i} / 2 \pi$, then the portion of $X(\Omega)$ around Ω_{i} will be modulated down to about $\Omega=0$ and then filtered by $H(\Omega)$. We now need to reshift the spectrum back to its original position. Therefore, we need to modulate by $e^{j \Omega_{i} n}$, or $\beta=$ $+\Omega_{i} / 2 \pi$.
(b) Consider $i=0,1$. Then the corresponding filters are as given in Figure S15.8.

Figure S15.8

For no overlap and complete coverage of the frequency band, we need

$$
\Omega_{0}=\frac{2 \pi}{N}-\Omega_{0}, \quad \text { or } \quad \Omega_{0}=\frac{\pi}{N}
$$

$\mathbf{S 1 5 . 9}$
(a) Since $s(t)$ is periodic in $T, S(\omega)$ will consist of impulses located at $2 \pi k / T$. See Figure S15.9-1.

Figure S15.9-1

If $\int_{-\infty}^{\infty} s(t)=0$, then the spectrum looks like Figure S15.9-2.

Figure S15.9-2
Of course, other impulses may also be zero.
(b) $Y(\omega)$ will be equal to a sum of the shifted and scaled versions of $X(\omega)$. Specifically,

$$
\begin{align*}
Y(\omega) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\theta) S(\omega-\theta) d \theta=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} S\left(\frac{2 \pi n}{T}\right) X\left(\omega-\frac{2 \pi n}{T}\right) \tag{S15.9-1}\\
& =\sum_{n=-\infty}^{\infty} a_{n} X\left(\omega-\frac{2 \pi n}{T}\right)
\end{align*}
$$

where a_{n} is the nth Fourier series coefficient of one period of $s(t)$. For some region $Y(\omega)$ to be zero, successive terms in the sum in eq. (S15.9-1) cannot overlap. Thus, the maximum T is such that $\pi / T=\omega_{c}$, or $T=\pi / \omega_{c}$.
(c) In general, we need to find some n such that $a_{n} \neq 0$. Then we use an ideal real bandpass filter to isolate the nth term of the sum in eq. (S15.9-1). The resulting signal $r(t)$ has Fourier transform $R(\omega)$ given by

$$
R(\omega)=a_{n} X\left(\omega-\frac{2 \pi n}{T}\right)+a_{-n} X\left(\omega+\frac{2 \pi n}{T}\right)
$$

Let $a_{n}=r_{n} e^{j \theta_{n}}$. Then $r(t)$ can be thought of as

$$
r(t)=x(t)\left[2 r_{n} \cos \left(\frac{2 \pi n t}{T}+\theta_{n}\right)\right]
$$

(remember the effect of modulating by a cosine signal). Suppose we multiply $r(t)$ by

$$
\frac{1}{r_{n}} \cos \left(\frac{2 \pi n t}{T}+\theta_{n}\right)
$$

Then

$$
\begin{aligned}
q(t) & =r(t) \frac{1}{r_{n}} \cos \left(\frac{2 \pi n t}{T}+\theta_{n}\right)=x(t) 2 \cos ^{2}\left(\frac{2 \pi n t}{T}+\theta_{n}\right) \\
& =x(t)\left[1+\cos \left(\frac{4 \pi n t}{T}+2 \theta_{n}\right)\right]
\end{aligned}
$$

If we now use a lowpass filter with cutoff π / T, we get $x(t)$. If we had picked the smallest n such that $a_{n} \neq 0$, we could have avoided the bandpass filtering because higher harmonics are eliminated by the lowpass filter.
(a) $Y(\Omega)$ will consist of repeated versions of $X(\Omega)$ centered at $(2 \pi / 5)+2 \pi k$ and scaled by $\frac{1}{2}$. Thus, $Y(\Omega)$ is as shown in Figure S15.10-1.

(b) $Z(\Omega)$ will consist, in turn, of repeated versions of $Y(\Omega)$, centered at $(4 \pi / 5)+$ $2 \pi k$ and scaled by $\frac{1}{2}$, as shown in Figure S15.10-2.

Figure S15.10-2
Note that the version of $Y(\Omega)$ centered at $6 \pi / 5$ contributes to the spectrum between $-3 \pi / 5$ and π.
(c) Two possible choices are given in Figures S15.10-3 and S15.10-4.

Figure S15.10-3

Figure S15.10-4

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

