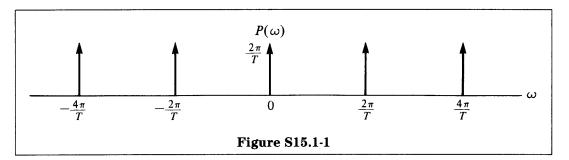
15 Discrete-Time Modulation

Solutions to Recommended Problems

<u>S15.1</u>

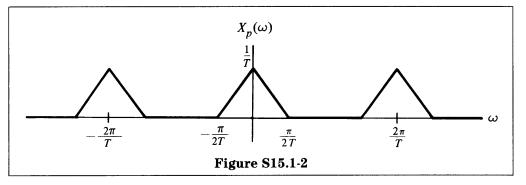
Recall that the Fourier transform of a train of impulses p(t) is $P(\omega)$, as shown in Figure S15.1-1.



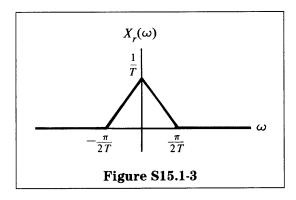
Since $x_p(t) = x(t)p(t)$,

$$X_p(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta) P(\omega - \theta) \ d\theta$$

by the modulation property. Thus, $X_p(\omega)$ is composed of repeated versions of $X(\omega)$ centered at $2\pi k/T$ for an integer k and scaled by 1/T, as shown in Figure S15.1-2.

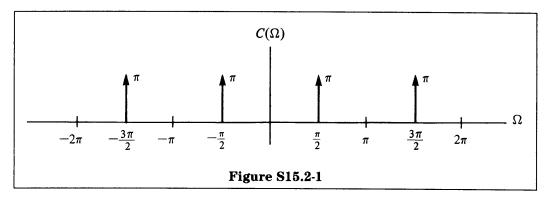


Since $X_r(\omega) = X_p(\omega)H(\omega)$, it is as indicated in Figure S15.1-3.



Thus

$$X_r(\omega) = \frac{1}{T}X(\omega)$$
 or $x_p = \frac{1}{T}x(t)$

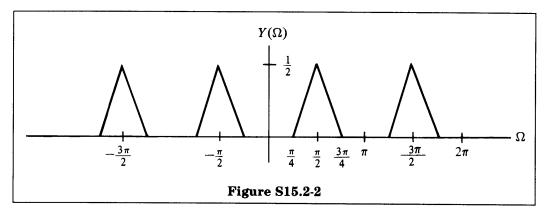


For $\Omega_0 = \pi/2$, $C(\Omega)$ is given as in Figure S15.2-1.

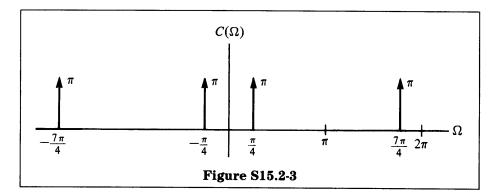
By the modulation theorem,

$$\mathcal{F}\{x[n]c[n]\} = \mathcal{F}\{y[n]\} = Y(\Omega) = \frac{1}{2\pi} \int_{2\pi} C(\theta) X(\Omega - \theta) d\theta$$

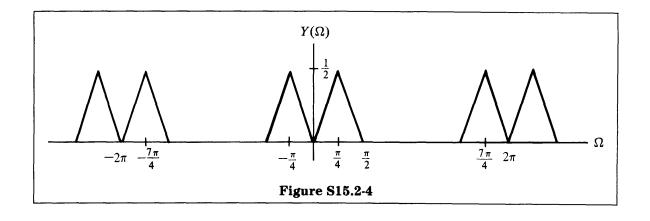
Thus, $Y(\Omega)$ is $X(\Omega)$ centered on each impulse in Figure S15.2-1 and scaled by $\frac{1}{2}$, as shown in Figure S15.2-2.



For Ω_0 , = $\pi/4$, $C(\Omega)$ is given as in Figure S15.2-3.

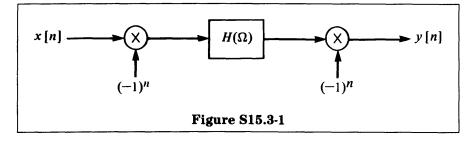


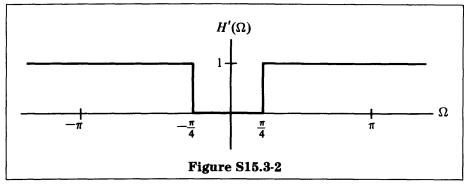
Thus, $Y(\Omega)$ in this case is as shown in Figure S15.2-4.



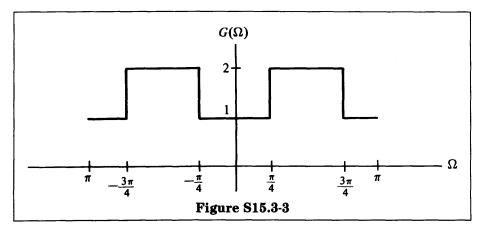
<u>S15.3</u>

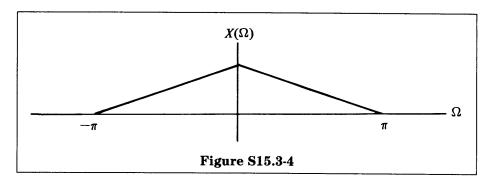
From the lecture we know that the system in Figure S15.3-1 is equivalent to a filter with response centered at $\Omega = \pi$, as shown in Figure S15.3-2.





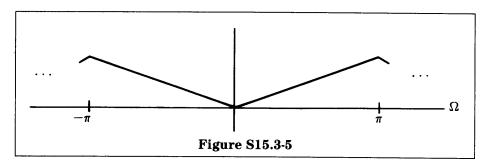
Therefore, the total response is the sum of $H'(\Omega)$ and $H(\Omega)$, shown in Figure S15.3-3.



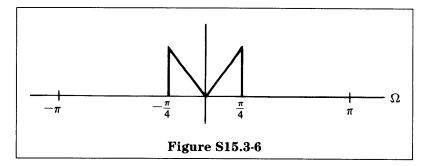


As an example, consider x[n] with Fourier transform $X(\Omega)$ as in Figure S15.3-4.

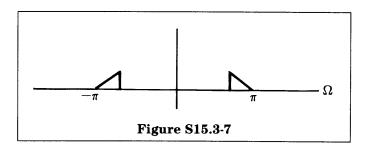
Then, after multiplication by $(-1)^n$, the resulting signal has the Fourier transform given in Figure S15.3-5.



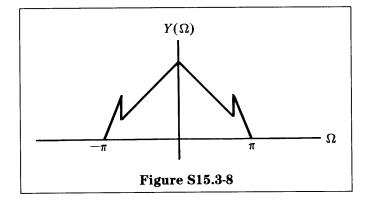
After filtering by $H(\Omega)$, the resulting signal has the spectrum given in Figure S15.3-6.



Finally, multiplying by $(-1)^n$ again yields the spectrum in Figure S15.3-7.



Thus, the spectrum of y[n] is given by the sum of the spectrum in Figure S15.3-8 and $X(\Omega)$, as shown in Figure S15.3-8.

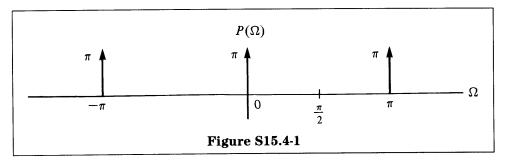


S15.4

(a) $P(\Omega)$ is composed of impulses spaced at $2\pi/N$, where N is the period of the sequence. In this case N = 2. The amplitude is $2\pi a_k$:

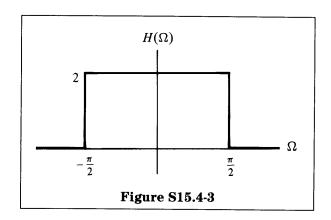
$$a_{k} = \frac{1}{2} \sum_{n=0}^{1} p[n] e^{-j(2\pi kn/2)}$$
$$= \frac{1}{2} [1 e^{-j(2\pi k0/2)} + 0 e^{-j(2\pi k1/2)}] = \frac{1}{2}$$

Thus, $P(\Omega)$ is as shown in Figure S15.4-1.



We now perform the periodic convolution of $X(\Omega)$ with $P(\Omega)$ and scale by $1/(2\pi)$ to obtain the spectrum in Figure S15.4-2.





(b) To recover x[n] from y[n], we can filter y[n] with $H(\Omega)$ given as in Figure S15.4-3.

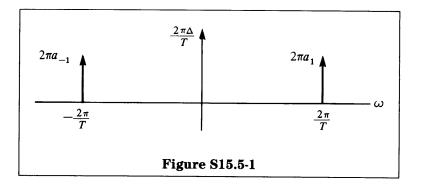
(c) Using p[n] we can send only every other sample of $x_1[n]$. Similarly, we can send every other sample of $x_2[n]$ and interleave them over one channel. Note, however, that we can do this only because $X(\Omega)$ is bandlimited to less than $\pi/2$.

<u>S15.5</u>

We note that s(t) is a periodic signal. Therefore, $S(\omega)$ is composed of impulses centered at $(2\pi k)/T$ for integer k. The impulse at $\omega = 0$ has area given by $2\pi a_0$, where a_0 is the zeroth Fourier series coefficient of s(t):

$$a_0 = \frac{1}{T} \int_T s(t) dt = \int_{-\Delta/2}^{\Delta/2} 1 dt = \frac{\Delta}{T}$$

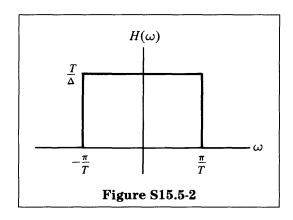
Thus, $S(\omega)$ is as shown in Figure S15.5-1.



The Fourier transform of x(t)s(t), denoted by $R(\omega)$, is given by

$$R(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta) S(\omega - \theta) \, d\theta = \sum_{n = -\infty}^{\infty} a_n \, X\left(\omega - \frac{2\pi n}{T}\right)$$

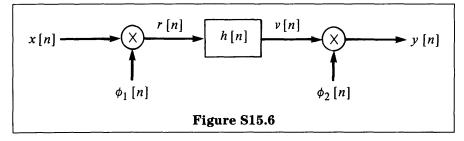
If $X(\omega) = 0$ for $|\omega| > \pi/T$, then $R(\omega)$ will equal $(\Delta/T)X(\omega)$ in the region $|\omega| < \pi/T$. Therefore, for $H(\omega)$ as in Figure S15.5-2, the signal y(t) = x(t).



Solutions to Optional Problems

S15.6

(a) Consider the labeling of the system in Figure S15.6.



$$r[n] = \phi_1[n]x[n]$$

$$v[n] = \sum_{k=-\infty}^{\infty} r[k]h[n-k] = \sum_{k=-\infty}^{\infty} \phi_1[k]x[k]h[n-k]$$

$$y[n] = v[n]\phi_2[n] = \phi_2[n] \sum_{k=-\infty}^{\infty} h[n-k]\phi_1[k]x[k]$$

Suppose $x_1[n] = \alpha x[n]$. Then

$$y_1[n] = \phi_2[n] \sum_{k=-\infty}^{\infty} h[n-k]\phi_1[k]\alpha x[k] = \alpha y[n]$$

Now let $x_2[n] = x_1[n] + x_0[n]$. Then

$$y_{2}[n] = \phi_{2}[n] \sum_{k=-\infty}^{\infty} h[n-k]\phi_{1}[k](x_{1}[k] + x_{0}[k]) = y_{1}[n] + y_{0}[n]$$

and the system is linear.

If $\phi_1[n] = \delta[n]$, then

$$y[n] = \phi_2[n] \sum_{k=-\infty}^{\infty} h[n-k]\delta[k]x[k] = \phi_2[n]h[n]x[0]$$

If x[n] is shifted so $x_1[n] = x[n - 1]$, then

$$y_1[n] = \phi_2[n]h[n]x_1[0] = \phi_2[n]h[n]x[-1] \neq y[n-1]$$

and the system is not time-invariant.

(b) From part (a),

$$y[n] = z^n \sum_{k=-\infty}^{\infty} h[n - k] z^{-k} x[k]$$

Let $x[n - m] = x_1[n]$. Then

$$y_{1}[n] = z^{n} \sum_{k=-\infty}^{\infty} h[n-k] z^{-k} x_{1}[k] = z^{n} \sum_{k=-\infty}^{\infty} h[n-k] z^{-k} x[k-m]$$

Let
$$p = k - m$$
, $k = p + m$. Then

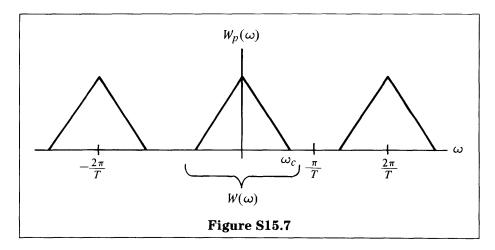
$$y_{1}[n] = z^{n} \sum_{p=-\infty}^{\infty} h[(n-m) - p] z^{-p-m} x[p]$$

= $z^{n-m} \sum_{p=-\infty}^{\infty} h[(n-m) - p] z^{-p} x[p]$
= $y[n-m]$

Therefore, the system is time-invariant.

S15.7

In general, w(t) is recoverable from $w_p(t)$ if $W_p(\omega)$ contains repeated versions of $W(\omega)$ that do not overlap, i.e., that have no aliasing, as shown in Figure S15.7.



Since $W(\omega)$ is repeated with period $2\pi/T$, the largest frequency component of $W(\omega)$, ω_c , must be less than or equal to π/T . From the modulation property,

$$W(\omega) = \frac{1}{2\pi} X(\omega) * X_2(\omega)$$

Thus, since the length of a convolution of two signals is the sum of the individual lengths,

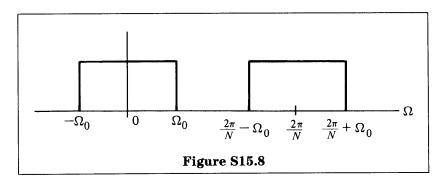
$$\omega_c = \omega_1 + \omega_2$$

From the preceding observations,

$$rac{\pi}{T} > \omega_1 + \omega_2 \qquad ext{or} \qquad T < rac{\pi}{\omega_1 + \omega_2}$$

S15.8

- (a) If $\alpha_1 = -\Omega_i/2\pi$, then the portion of $X(\Omega)$ around Ω_i will be modulated down to about $\Omega = 0$ and then filtered by $H(\Omega)$. We now need to reshift the spectrum back to its original position. Therefore, we need to modulate by $e^{j\Omega_i n}$, or $\beta = +\Omega_i/2\pi$.
- (b) Consider i = 0, 1. Then the corresponding filters are as given in Figure S15.8.

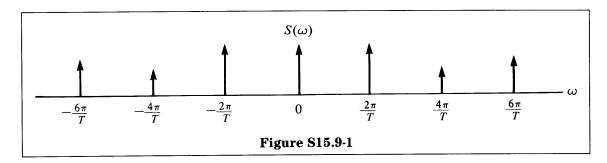


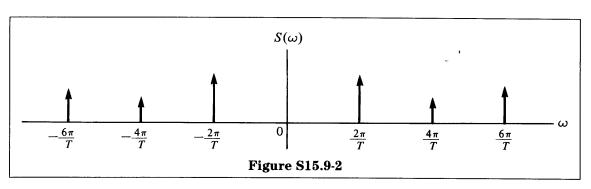
For no overlap and complete coverage of the frequency band, we need

$$\Omega_0 = \frac{2\pi}{N} - \Omega_0, \quad \text{or} \quad \Omega_0 = \frac{\pi}{N}$$

<u>S15.9</u>

(a) Since s(t) is periodic in T, $S(\omega)$ will consist of impulses located at $2\pi k/T$. See Figure S15.9-1.





If $\int_{-\infty}^{\infty} s(t) = 0$, then the spectrum looks like Figure S15.9-2.

Of course, other impulses may also be zero.

(b) $Y(\omega)$ will be equal to a sum of the shifted and scaled versions of $X(\omega)$. Specifically,

$$Y(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta) S(\omega - \theta) \, d\theta = \frac{1}{2\pi} \sum_{n = -\infty}^{\infty} S\left(\frac{2\pi n}{T}\right) X\left(\omega - \frac{2\pi n}{T}\right)$$

$$= \sum_{n = -\infty}^{\infty} a_n X\left(\omega - \frac{2\pi n}{T}\right),$$
 (S15.9-1)

where a_n is the *n*th Fourier series coefficient of one period of s(t). For some region $Y(\omega)$ to be zero, successive terms in the sum in eq. (S15.9-1) cannot overlap. Thus, the maximum T is such that $\pi/T = \omega_c$, or $T = \pi/\omega_c$.

(c) In general, we need to find some n such that $a_n \neq 0$. Then we use an ideal real bandpass filter to isolate the *n*th term of the sum in eq. (S15.9-1). The resulting signal r(t) has Fourier transform $R(\omega)$ given by

$$R(\omega) = a_n X\left(\omega - \frac{2\pi n}{T}\right) + a_{-n} X\left(\omega + \frac{2\pi n}{T}\right)$$

Let $a_n = r_n e^{j\theta_n}$. Then r(t) can be thought of as

$$r(t) = x(t) \left[2r_n \cos\left(\frac{2\pi nt}{T} + \theta_n\right) \right]$$

(remember the effect of modulating by a cosine signal). Suppose we multiply r(t) by

$$\frac{1}{r_n}\cos\left(\frac{2\pi nt}{T}+\theta_n\right)$$

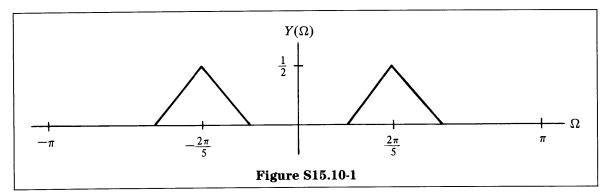
Then

$$q(t) = r(t) \frac{1}{r_n} \cos\left(\frac{2\pi nt}{T} + \theta_n\right) = x(t) 2 \cos^2\left(\frac{2\pi nt}{T} + \theta_n\right)$$
$$= x(t) \left[1 + \cos\left(\frac{4\pi nt}{T} + 2\theta_n\right)\right]$$

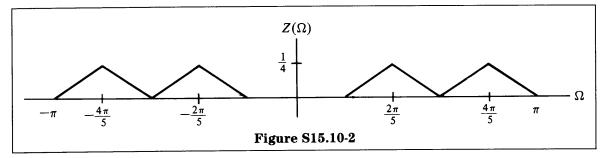
If we now use a lowpass filter with cutoff π/T , we get x(t). If we had picked the smallest n such that $a_n \neq 0$, we could have avoided the bandpass filtering because higher harmonics are eliminated by the lowpass filter.

S15.10

(a) $Y(\Omega)$ will consist of repeated versions of $X(\Omega)$ centered at $(2\pi/5) + 2\pi k$ and scaled by $\frac{1}{2}$. Thus, $Y(\Omega)$ is as shown in Figure S15.10-1.



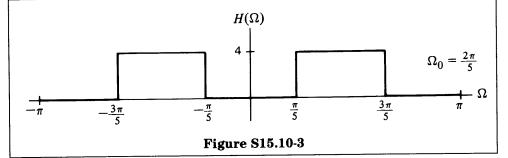
(b) $Z(\Omega)$ will consist, in turn, of repeated versions of $Y(\Omega)$, centered at $(4\pi/5)$ + $2\pi k$ and scaled by $\frac{1}{2}$, as shown in Figure S15.10-2.

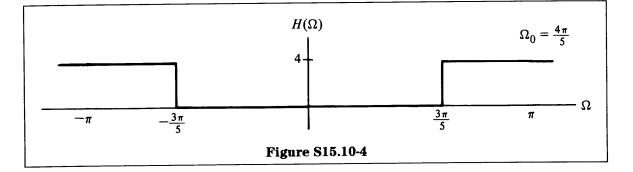


Note that the version of $Y(\Omega)$ centered at $6\pi/5$ contributes to the spectrum between $-3\pi/5$ and π .

 $H(\Omega)$ 4 $\Omega_0 = \frac{2\pi}{5}$ - Ω $\frac{3\pi}{5}$ $-\pi$ $\frac{3\pi}{5}$ $-\frac{\pi}{5}$ $\frac{\pi}{5}$ **Figure S15.10-3**

(c) Two possible choices are given in Figures S15.10-3 and S15.10-4.





MIT OpenCourseWare http://ocw.mit.edu

Resource: Signals and Systems Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.