14 Demonstration of Amplitude Modulation

Solutions to

Recommended Problems
S14.1
(a) We see in Figure S14.1-1 that the modulating cosine wave has a peak amplitude of $2 K=2$, so that $K=1$. At the point in time when the modulating cosine wave is zero, the total signal is $A=2$, so $K / A=0.5$. Therefore, the signal has 50% modulation. See Figure S14.1-1.

Figure S14.1-1
(b) $2 K=2, K=1, A=1$, so $K / A=1$, and the signal has 100% modulation. See Figure S14.1-2.

(c) $2 K=2, K=1, A=0.5$, so $K / A=2$, and the signal has 200% modulation.

S14.2

(a) (i)

Figure S14.2-1
(ii)

Figure S14.2-2
(iii)

Figure S14.2-3
(b) (i) $\quad Y(\omega)=\int_{-\infty}^{\infty} y(t) e^{-j \omega t} d t$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} x\left(\frac{t}{2}\right) e^{-j \omega t} d t, \quad t^{\prime}=\frac{t}{2}, \quad d t^{\prime}=\frac{1}{2} d t \\
& =\int_{-\infty}^{\infty} x\left(t^{\prime}\right) e^{-j \omega 2 t^{\prime}} 2 d t^{\prime} \\
& =2 X(2 \omega)
\end{aligned}
$$

Therefore, $Y(\omega)$ is a compressed version of $X(\omega)$. See Figure S14.2-4.

(ii) From the convolution theorem,

$$
Y(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\Omega) H(\omega-\Omega) d \Omega
$$

where $\cos \pi t \stackrel{7}{\longleftrightarrow} H(\omega)$, and $H(\omega)$ is as shown in Figure S14.2-5. Therefore, $Y(\omega)$ is as given in Figure S14.2-6.

Figure S14.2-5

Figure S14.2-6
(iii) $\quad Y(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(\Omega) P(\omega-\Omega) d \Omega$
$P(\omega)$ is an impulsive spectrum, as shown in Figure S14.2-7, because the corresponding $p(t)$ is periodic. (Note that only odd harmonics are present.)

Figure S14.2-7

Therefore $Y(\omega)$ is as shown in Figure S14.2-8.

Figure S14.2-8

S14.3

(a) ii
(b) i
(c) iii
(d) vi
(e) v
(f) iv
(g) vii
(h) x
(i) ix
(j) viii
(a) We are considering

$$
X(\Omega)=\sum_{n=0}^{N-1} x[n] e^{-j \Omega n},
$$

which is effectively the Fourier transform of a signal of infinite duration multiplied by a window of length N :

$$
X(\Omega)=\sum_{n=-\infty}^{\infty} \cos \omega_{0} n T(u[n]-u[n-N]) e^{-j \Omega n}
$$

From the convolution theorem we can compute the Fourier transform of the product of these two sequences:

$$
\begin{aligned}
\cos \omega_{0} n T & \stackrel{\mathcal{F}}{\longleftrightarrow} \pi\left[\delta\left(\Omega-\omega_{0} T\right)+\delta\left(\Omega+\omega_{0} T\right)\right], \quad-\pi<\Omega<\pi \\
u[n]-u[n-N] & \stackrel{\mathcal{F}}{\longrightarrow} \frac{1-e^{-j \Omega N}}{1-e^{-j \Omega}}=e^{-j \Omega(N-1) / 2} \frac{\sin N \Omega / 2}{\sin \Omega / 2}
\end{aligned}
$$

Therefore,

$$
X(\Omega)=\frac{1}{2} e^{-j\left(\Omega-\omega_{0} T\right)(N-1) / 2} \frac{\sin \left[N\left(\Omega-\omega_{0} T\right) / 2\right]}{\sin \left[\left(\Omega-\omega_{0} T\right) / 2\right]}+\frac{1}{2} e^{-j\left(\Omega+\omega_{0} T\right)(N-1) / 2} \frac{\sin \left[N\left(\Omega+\omega_{0} T\right) / 2\right]}{\sin \left[\left(\Omega+\omega_{0} T\right) / 2\right]}
$$

as shown in Figure S14.4-1. (Note that the spectrum is periodic with period 2π.)

Figure S14.4-1
(b) $\quad X\left(\Omega_{k}\right)=\sum_{n=0}^{N-1} x[n] e^{-j \Omega_{k} n}$
$X\left(\frac{2 \pi k}{N}\right)=\sum_{n=0}^{N-1} \cos \omega_{0} n T e^{-j(2 \pi k / N) n}$
$=\sum_{n=0}^{N-1} \frac{1}{2} e^{j \omega_{0} n T} e^{-j(2 \pi k / N) n}+\sum_{n=0}^{N-1} \frac{1}{2} e^{-j \omega_{0} n T} e^{-j(2 \pi k / N) n}$
$=\frac{1}{2}\left(\frac{1-e^{j\left(\omega_{0} T-2 \pi k / N\right) N}}{1-e^{j\left(\omega_{0} T-2 \pi k / N\right)}}\right)+\frac{1}{2} \frac{1-e^{j\left(-\omega_{0} T-2 \pi k / N\right) N}}{1-e^{j\left(-\omega_{0} T-2 \pi k / N\right)}}$
(i) For $\omega_{0} T=2 \pi\left(\frac{2}{5}\right)$ and $N=5$, the first term is zero for

$$
k=\ldots-3,2,7, \ldots
$$

However, when $k=2$ we have the ratio of

$$
\frac{1}{2}\left(\frac{1-e^{j 2 \pi(2 / 5-k / 5) 5}}{1-e^{j 2 \pi(2 / 5-k / 5)}}\right)=\frac{0}{0}
$$

and we treat the limit as $k \rightarrow 0$. Using L'Hôpital's rule, we have $\frac{1}{2}(5)=$ 2.5. Similarly, the second term is zero except when $k=\ldots-2,3,8, \ldots$ Taking the limit yields 2.5. So $X(2 \pi k / 5)$ is as shown in Figure S14.4-2.

Figure S14.4-2

Note that $X(2 \pi k / 5)$ is periodic in k with period 5 since $X(\Omega)$ is periodic in Ω with period 2π.
$X\left(\frac{2 \pi k}{N}\right)=\frac{1}{2}\left(\frac{1-e^{j\left(\omega_{0} T-2 \pi k / N\right) N}}{1-e^{j\left(\omega_{0} T-2 \pi k / N\right)}}\right)+\frac{1}{2}\left(\frac{1-e^{j\left(-\omega_{0} T-2 \pi k / N\right) N}}{1-e^{j\left(-\omega_{0} T-2 \pi k / N\right)}}\right)$
Now $\omega_{0} T=2 \pi \frac{3}{10}$, and the numerator and denominator are nonzero for all k. Evaluating the preceding expression yields $X(k)$ as shown in Figure S14.4-3.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

