8 Continuous-Time
 Fourier Transform

Solutions to
 Recommended Problems

$\mathbf{S 8 . 1}$
(a)

Figure S8.1-1
Note that the total width is T_{1}.
(b)

Figure S8.1-2
(c) Using the definition of the Fourier transform, we have

$$
\begin{aligned}
X(\omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t=\int_{-T_{1} / 2}^{T_{1} / 2} 1 e^{-j \omega t} d t \operatorname{since} x(t)=0 \text { for }|t|>\frac{T_{1}}{2} \\
& =\left.\frac{-1}{j \omega} e^{-j \omega t}\right|_{-T_{1} / 2} ^{T_{1} / 2}=\frac{-1}{j \omega}\left(e^{-j \omega T_{1} / 2}-e^{j \omega T_{1} / 2}\right)=\frac{2 \sin \frac{\omega T_{1}}{2}}{\omega}
\end{aligned}
$$

See Figure S8.1-3.

Figure S8.1-3
(d) Using the analysis formula, we have

$$
a_{k}=\frac{1}{T_{0}} \int_{T_{0}} \tilde{x}(t) e^{-j k \omega_{0} t} d t,
$$

where we integrate over any period.

$$
\begin{aligned}
& a_{k}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} \tilde{x}(t) e^{-j k\left(2 \pi / T_{0}\right) t} d t=\frac{1}{T_{0}} \int_{-T_{1} / 2}^{T_{1} / 2} e^{-j k\left(2 \pi / T_{0}\right) t} d t, \\
& a_{k}=\frac{1}{T_{0}}\left(\frac{1}{-j k \frac{2 \pi}{T_{0}}}\right)\left(e^{-j k \pi T_{1} / T_{0}}-e^{j k \pi T_{1} / T_{0}}\right)=\frac{\sin k \pi\left(T_{1} / T_{0}\right)}{\pi k}=\frac{\sin \pi(2 k / 3)}{\pi k}
\end{aligned}
$$

Figure S8.1-4
Note that $a_{k}=0$ whenever $(2 \pi k) / 3=\pi m$ for m a nonzero integer.
(e) Substituting $(2 \pi k) / T_{0}$ for ω, we obtain

$$
\left.\frac{1}{T_{0}} X(\omega)\right|_{\omega=(2 \pi k) / T_{0}}=\frac{1}{T_{0}} \frac{2 \sin \left(\pi k T_{1} / T_{0}\right)}{2 \pi k / T_{0}}=\frac{\sin \pi k\left(T_{1} / T_{0}\right)}{\pi k}=a_{k}
$$

(f) From the result of part (e), we sample the Fourier transform of $x(t), X(\omega)$, at $\omega=2 \pi k / T_{0}$ and then scale by $1 / T_{0}$ to get a_{k}.
(a) $X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t=\int_{-\infty}^{\infty} \delta(t-5) e^{-j \omega t} d t=e^{-j 5 \omega}=\cos 5 \omega-j \sin 5 \omega$, by the sifting property of the unit impulse.

$$
\begin{aligned}
& |X(\omega)|=\left|e^{j 5 \omega}\right|=1 \quad \text { for all } \omega, \\
& \Varangle X(\omega)=\tan ^{-1}\left[\frac{\operatorname{Im}\{X(\omega)\}}{\operatorname{Re}\{X(\omega)\}}\right]=\tan ^{-1}\left(\frac{-\sin 5 \omega}{\cos 5 \omega}\right)=-5 \omega
\end{aligned}
$$

Figure S8.2-1
(b) $X(\omega)=\int_{-\infty}^{\infty} e^{-a t} u(t) e^{-j \omega t} d t=\int_{0}^{\infty} e^{-a t} e^{-j \omega t} d t$

$$
=\int_{0}^{\infty} e^{-\left(a+j_{\omega}\right) t} d t=\left.\frac{-1}{a+j \omega} e^{-\left(a+j_{\omega}\right) t}\right|_{0} ^{\infty}
$$

Since $\operatorname{Re}\{a\}>0, e^{-a t}$ goes to zero as t goes to infinity. Therefore,

$$
\begin{aligned}
X(\omega) & =\frac{-1}{a+j \omega}(0-1)=\frac{1}{a+j \omega}, \\
|X(\omega)| & =\left[X(\omega) X^{*}(\omega)\right]^{1 / 2}=\left[\frac{1}{a+j \omega}\left(\frac{1}{a-j \omega}\right)\right]^{1 / 2} \frac{1}{\sqrt{a^{2}+\omega^{2}}}, \\
\operatorname{Re}\{X(\omega)\} & =\frac{X(\omega)+X^{*}(\omega)}{2}=\frac{a}{a^{2}+\omega^{2}}, \\
\operatorname{Im}\{X(\omega)\} & =\frac{X(\omega)-X^{*}(\omega)}{2}=\frac{-\omega}{a^{2}+\omega^{2}}, \\
\Varangle X(\omega) & =\tan ^{-1}\left[\frac{\operatorname{Im}\{X(\omega)\}}{\operatorname{Re}\{X(\omega)\}}\right]=-\tan ^{-1} \frac{\omega}{a}
\end{aligned}
$$

The magnitude and angle of $X(\omega)$ are shown in Figure S8.2-2.

(c) $X(\omega)=\int_{-\infty}^{\infty} e^{(-1+j 2) t} u(t) e^{-j \omega t} d t=\int_{0}^{\infty} e^{(-1+j 2) t} e^{-j \omega t} d t$

$$
=\left.\frac{1}{-1+j(2-\omega)} e^{[-1+j(2-\omega)] t}\right|_{0} ^{\infty}
$$

Since $\operatorname{Re}\{-1+j(2-\omega)\}<0, \lim _{t \rightarrow \infty} e^{1-1+j(2-\omega)] t}=0$. Therefore,

$$
\begin{aligned}
X(\omega) & =\frac{1}{1+j(\omega-2)} \\
|X(\omega)| & =\left[X(\omega) X^{*}(\omega)\right]^{1 / 2}=\frac{1}{\sqrt{1+(\omega-2)^{2}}} \\
\operatorname{Re}\{X(\omega)\} & =\frac{X(\omega)+X^{*}(\omega)}{2}=\frac{1}{1+(\omega-2)^{2}} \\
\operatorname{Im}\{X(\omega)\} & =\frac{X(\omega)-X^{*}(\omega)}{2} \frac{-(\omega-2)}{1+(\omega-2)^{2}} \\
\Varangle X(\omega) & =\tan ^{-1}\left[\frac{\operatorname{Im}\{X(\omega)\}}{\operatorname{Re}\{X(\omega)\}}\right]=-\tan ^{-1}(\omega-2)
\end{aligned}
$$

The magnitude and angle of $X(\omega)$ are shown in Figure S8.2-3.

Figure S8.2-3
Note that there is no symmetry about $\omega=0$ since $x(t)$ is not real.
$\mathbf{S 8 . 3}$
(a) $X_{3}(\omega)=\int_{-\infty}^{\infty} x_{3}(t) e^{-j \omega t} d t$

Substituting for $x_{3}(t)$, we obtain

$$
\begin{aligned}
X_{3}(\omega) & =\int_{-\infty}^{\infty}\left[a x_{1}(t)+b x_{2}(t)\right] e^{-j \omega t} d t \\
& =\int_{-\infty}^{\infty} a x_{1}(t) e^{-j \omega t} d t+\int_{-\infty}^{\infty} b x_{2}(t) e^{-j \omega t} d t \\
& =a \int_{-\infty}^{\infty} x_{1}(t) e^{-j \omega t} d t+b \int_{-\infty}^{\infty} x_{2}(t) e^{-j \omega t} d t=a X_{1}(\omega)+b X_{2}(\omega)
\end{aligned}
$$

(b) Recall the sifting property of the unit impulse function:

$$
\int_{-\infty}^{\infty} h(t) \delta\left(t-t_{0}\right) d t=h\left(t_{0}\right)
$$

Therefore,

$$
\int_{-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}\right) e^{j \omega t} d \omega=2 \pi e^{j \omega_{0} t}
$$

Thus,

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}\right) e^{j \omega t} d \omega=e^{j \omega_{0} t}
$$

Note that the integral relating $2 \pi \delta\left(\omega-\omega_{0}\right)$ and $e^{j \omega_{0} t}$ is exactly of the form

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega
$$

where $x(t)=e^{j \omega_{0} t}$ and $X(\omega)=2 \pi \delta\left(\omega-\omega_{0}\right)$. Thus, we can think of $e^{j \omega_{0} t}$ as the inverse Fourier transform of $2 \pi \delta\left(\omega-\omega_{0}\right)$. Therefore, $2 \pi \delta\left(\omega-\omega_{0}\right)$ is the Fourier transform of $e^{j \omega_{0} t}$.
(c) Using the result of part (a), we have

$$
X(\omega)=\mathscr{F}\{\tilde{x}(t)\}=\mathcal{F}\left\{\sum_{k=-\infty}^{\infty} a_{k} e^{j k(2 \pi / T) t}\right\}=\sum_{k=-\infty}^{\infty} a_{k} \mathcal{F}\left\{e^{j k(2 \pi / T) t}\right\}
$$

From part (b),

$$
\mathcal{F}\left\{e^{j k(2 \pi / T) t}\right\}=2 \pi \delta\left(\omega-\frac{2 \pi k}{T}\right)
$$

Therefore,

$$
\tilde{X}(\omega)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\omega-\frac{2 \pi k}{T}\right)
$$

(d)

Figure S8.3
(a) We see that the new transform is

$$
X_{a}(f)=\left.X(\omega)\right|_{\omega=2 \pi f}
$$

We know that

$$
x(t)=\frac{1}{2 \pi} \int_{\omega=-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega
$$

Let $\omega=2 \pi f$. Then $d \omega=2 \pi d f$, and

$$
x(t)=\frac{1}{2 \pi} \int_{f=-\infty}^{\infty} X(2 \pi f) e^{j 2 \pi f t} 2 \pi d f=\int_{f=-\infty}^{\infty} X_{a}(f) e^{j 2 \pi f t} d f
$$

Thus, there is no factor of 2π in the inverse relation.

Figure S8.4
(b) Comparing

$$
X_{b}(v)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x(t) e^{-j v t} d t \quad \text { and } \quad X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
$$

we see that

$$
X_{b}(v)=\left.\frac{1}{\sqrt{2 \pi}} X(\omega)\right|_{\omega=v} \quad \text { or } \quad X(\omega)=\sqrt{2 \pi} X_{b}(\omega)
$$

The inverse transform relation for $X(\omega)$ is

$$
\begin{aligned}
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \sqrt{2 \pi} X_{b}(\omega) e^{j \omega t} d \omega \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} X_{b}(v) e^{j v t} d v
\end{aligned}
$$

where we have substituted v for ω. Thus, the factor of $1 / 2 \pi$ has been distributed among the forward and inverse transforms.
(a) By inspection, $T_{0}=6$.
(b) $a_{k}=\frac{1}{T_{0}} \int_{T_{0}} \tilde{x}(t) e^{-j k\left(2 \pi / T_{0}\right) t} d t$

We integrate from -3 to 3 :

$$
\begin{aligned}
a_{k} & =\frac{1}{6} \int_{-3}^{3}\left[\frac{1}{2} \delta(t+1)+\delta(t)+\frac{1}{2} \delta(t-1)\right] e^{-j k(2 \pi / 6) t} d t \\
& =\frac{1}{6}\left(\frac{1}{2} e^{j 2 \pi k / 6}+1+\frac{1}{2} e^{-j 2 \pi k / 6}\right)=\frac{1}{6}\left(1+\cos \frac{2 \pi k}{6}\right)
\end{aligned}
$$

So

$$
\tilde{x}(t)=\sum_{k=-\infty}^{\infty} \frac{1}{6}\left(1+\cos \frac{2 \pi k}{6}\right) e^{j k(2 \pi / 6) t}
$$

(c) (i) $X_{1}(\omega)=\int_{-\infty}^{\infty} x_{1}(t) e^{-j \omega t} d t=\int_{-\infty}^{\infty}\left[\frac{1}{2} \delta(t+1)+\delta(t)+\frac{1}{2} \delta(t-1)\right] e^{-j \omega t} d t$

$$
=\frac{1}{2} e^{j \omega}+1+\frac{1}{2} e^{-j \omega}=1+\cos \omega
$$

(ii) $\quad X_{2}(\omega)=\int_{-\infty}^{\infty} x_{2}(t) e^{-j \omega t} d t=\int_{-\infty}^{\infty}\left[\delta(t)+\frac{1}{2} \delta(t-1)+\frac{1}{2} \delta(t-5)\right] e^{-j \omega t} d t$

$$
=1+\frac{1}{2} e^{-j \omega}+\frac{1}{2} e^{-j 5 \omega}
$$

(d) We see that by periodically repeating $x_{1}(t)$ with period $T_{1}=6$, we get $\tilde{x}(t)$, as shown in Figure S8.5-1.

Figure S8.5-1

Similarly, we can periodically repeat $x_{2}(t)$ to get $\tilde{x}(t)$. Thus $T_{2}=6$. See Figure S8.5-2.

(e) Since $\tilde{x}(t)$ is a periodic repetition of $x_{1}(t)$ or $x_{2}(t)$, the Fourier series coefficients of $\tilde{x}(t)$ should be expressible as scaled samples of $X_{1}(\omega)$. Evaluate $X_{1}(\omega)$ at $\omega=$ $2 \pi k / 6$. Then

$$
\left.X_{1}(\omega)\right|_{\omega=2 \pi k / 6}=1+\cos \frac{2 \pi k}{6}=6 a_{k} \Rightarrow a_{k}=\frac{1}{6} X_{1}\left(\frac{2 \pi k}{6}\right)
$$

Similarly, we can get a_{k} as a scaled sample of $X_{2}(\omega)$. Consider $X_{2}(2 \pi k / 6)$:

$$
X_{2}\left(\frac{2 \pi k}{6}\right)=1+\frac{1}{2} e^{-j 2 \pi k / 6}+\frac{1}{2} e^{-j 10 \pi k / 6}
$$

But $e^{-j 10 \pi k / 6}=e^{-j(10 \pi k / 6-2 \pi k)}=e^{j 2 \pi k / 6}$. Thus,

$$
X_{2}\left(\frac{2 \pi k}{6}\right)=1+\cos \frac{2 \pi k}{6}=6 a_{k} .
$$

Although $X_{1}(\omega) \neq X_{2}(\omega)$, they are equal for $\omega=2 \pi k / 6$.
(a) By inspection,

$$
e^{-a t} u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{a+j \omega}
$$

Thus,

$$
e^{-7 t} u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{7+j \omega}
$$

Direct inversion using the inverse Fourier transform formula is very difficult.
(b) $X_{b}(\omega)=2 \delta(\omega+7)+2 \delta(\omega-7)$,

$$
\begin{aligned}
x_{b}(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X_{b}(\omega) e^{j \omega t} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} 2[\delta(\omega+7)+\delta(\omega-7)] e^{j \omega t} d \omega \\
& =\frac{1}{\pi} e^{-j 7 t}+\frac{1}{\pi} e^{j 7 t}=\frac{2}{\pi} \cos 7 t
\end{aligned}
$$

(c) From Example 4.8 of the text (page 191), we see that

$$
e^{-a|t|} \stackrel{7}{\longleftrightarrow} \frac{2 a}{a^{2}+\omega^{2}}
$$

However, note that

$$
\alpha x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \alpha X(\omega)
$$

since

$$
\int_{-\infty}^{\infty} \alpha x(t) e^{-j \omega t} d t=\alpha \int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t=\alpha X(\omega)
$$

Thus,

$$
\frac{1}{2 a} e^{-a|t|} \stackrel{7}{\longleftrightarrow} \frac{1}{a^{2}+\omega^{2}} \quad \text { or } \quad \frac{1}{9+\omega^{2}} \stackrel{7}{\longleftrightarrow} \frac{1}{6} e^{-3| | \mid}
$$

(d) $X_{a}(\omega) X_{b}(\omega)=X_{a}(\omega)[2 \delta(\omega+7)+2 \delta(\omega-7)]$

$$
=2 X_{a}(-7) \delta(\omega+7)+2 X_{a}(7) \delta(\omega-7)
$$

$$
X_{d}(\omega)=\frac{2}{7-j 7} \delta(\omega+7)+\frac{2}{7+j 7} \delta(\omega-7)
$$

$$
x_{d}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\frac{2}{7-j 7} \delta(\omega+7)+\frac{2}{7+j 7} \delta(\omega-7)\right] e^{j \omega t} d \omega
$$

$$
x_{d}(t)=\frac{1}{\pi} \frac{1}{7-j 7} e^{-j 7 t}+\frac{1}{\pi} \frac{1}{7+j 7} e^{j 7 t}
$$

Note that

$$
\frac{1}{7+j 7}=\frac{1}{7}\left(\frac{\sqrt{2}}{2}\right) e^{-j \pi / 4}, \quad \frac{1}{7-j 7}=\frac{1}{7}\left(\frac{\sqrt{2}}{2}\right) e^{+j \pi / 4}
$$

Thus

$$
x_{d}(t)=\frac{1}{\pi}\left(\frac{1}{7}\right) \frac{\sqrt{2}}{2}\left[e^{-j(7 t-\pi / 4)}+e^{j(7 t-\pi / 4)}\right]=\frac{\sqrt{2}}{7 \pi} \cos \left(7 t-\frac{\pi}{4}\right)
$$

(e) $X_{e}(\omega)= \begin{cases}\omega e^{-j 3 \omega}, & 0 \leq \omega \leq 1, \\ -\omega e^{-j 3 \omega}, & -1 \leq \omega \leq 0, \\ 0, & \text { elsewhere, }\end{cases}$

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega=\frac{1}{2 \pi}\left[\int_{0}^{1} \omega e^{-j 3 \omega} e^{j \omega t} d \omega-\int_{-1}^{0} \omega e^{-j 3 \omega} e^{j \omega t} d \omega\right]
$$

Note that

$$
\int x e^{\alpha x} d x=\frac{e^{\alpha x}}{\alpha^{2}}(\alpha x-1)
$$

Substituting $\alpha=j(t-3)$ into the integrals, we obtain

$$
x(t)=\frac{1}{2 \pi}\left[\left.\frac{e^{j(t-3) \omega}}{(j(t-3))^{2}}(j(t-3) \omega-1)\right|_{0} ^{1}-\left.\frac{e^{j(t-3) \omega}}{(j(t-3))^{2}}(j(t-3) \omega-1)\right|_{-1} ^{0}\right]
$$

which can be simplified to yield

$$
x(t)=\frac{1}{\pi}\left[\frac{\cos (t-3)-1}{(t-3)^{2}}+\frac{\sin (t-3)}{(t-3)}\right]
$$

Solutions to

Optional Problems
$\mathbf{S 8 . 7}$
(a) $Y(\omega)=\int_{t=-\infty}^{\infty} y(t) e^{-j \omega t} d t=\int_{t=-\infty}^{\infty} \int_{\tau=-\infty}^{\infty} x(\tau) h(t-\tau) d \tau e^{-j \omega t} d t$
$=\int_{t=-\infty}^{\infty} \int_{\tau=-\infty}^{\infty} x(\tau) h(t-\tau) e^{-j \omega t} d \tau d t$
(b) Let $r=t-\tau$ and integrate for all τ and r. Then

$$
\begin{aligned}
Y(\omega) & =\int_{\tau=-\infty}^{\infty} \int_{r=-\infty}^{\infty} x(\tau) h(r) e^{-j \omega(r+\tau)} d r d \tau \\
& =\int_{\tau=-\infty}^{\infty} x(\tau) e^{-j \omega \tau} d \tau \int_{r=-\infty}^{\infty} h(r) e^{-j \omega r} d r \\
& =X(\omega) H(\omega)
\end{aligned}
$$

(a) Using the analysis equation, we obtain

$$
a_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} \delta(t) e^{-j k(2 \pi / T) t} d t=\frac{1}{T}
$$

Thus all the Fourier series coefficients are equal to $1 / T$.
(b) For periodic signals, the Fourier transform can be calculated from a_{k} as

$$
X(\omega)=2 \pi \sum_{k=-\infty}^{\infty} a_{k} \delta\left(\omega-\frac{2 \pi k}{T}\right)
$$

In this case,

$$
P(\omega)=\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega-\frac{2 \pi k}{T}\right)
$$

Figure $\mathbf{S 8 . 8}$
(c) We are required to show that

$$
\tilde{x}(t)=x(t) * p(t)
$$

Substituting for $p(t)$, we have

$$
x(t) * p(t)=x(t) *\left[\sum_{k=-\infty}^{\infty} \delta(t-k T)\right]
$$

Using the associative property of convolution, we obtain

$$
x(t) * p(t)=\sum_{k=-\infty}^{\infty}[x(t) * \delta(t-k T)]
$$

From the sifting property of $\delta(t)$, it follows that

$$
x(t) * p(t)=\sum_{k=-\infty}^{\infty} x(t-k T)=\tilde{x}(t)
$$

Thus, $x(t) * p(t)$ is a periodic repetition of $x(t)$ with period T.
(d) From Problem P8.7, we have

$$
\begin{aligned}
\tilde{X}(\omega) & =X(\omega) P(\omega) \\
& =X(\omega) \sum_{k=-\infty}^{\infty} \frac{2 \pi}{T} \delta\left(\omega-\frac{2 \pi k}{T}\right) \\
& =\sum_{k=-\infty}^{\infty} \frac{2 \pi}{T} X(\omega) \delta\left(\omega-\frac{2 \pi k}{T}\right)
\end{aligned}
$$

Since each summation term is nonzero only at $\omega=2 \pi k / T$,

$$
\tilde{X}(\omega)=\sum_{k=-\infty}^{\infty} \frac{2 \pi}{T} X\left(\frac{2 \pi k}{T}\right) \delta\left(\omega-\frac{2 \pi k}{T}\right)
$$

From this expression we see that the Fourier series coefficients of $\tilde{x}(t)$ are

$$
a_{k}=\frac{1}{T} X\left(\frac{2 \pi k}{T}\right)
$$

which is consistent with our previous discussions.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

