5 Properties of Linear, Time-Invariant Systems
 Solutions to
 Recommended Problems

S5.1
The inverse system for a continuous-time accumulation (or integration) is a differentiator. This can be verified because

$$
\frac{d}{d t}\left[\int_{-\infty}^{t} x(\tau) d \tau\right]=x(t)
$$

Therefore, the input-output relation for the inverse system in Figure S5.1 is

$$
x(t)=\frac{d y(t)}{d t}
$$

Figure S5.1
$\mathbf{S 5 . 2}$
(a) We want to show that

$$
h[n]-a h[n-1]=\delta[n]
$$

Substituting $h[n]=a^{n} u[n]$, we have

$$
a^{n} u[n]-a a^{n-1} u[n-1]=a^{n}(u[n]-u[n-1])
$$

But

$$
u[n]-u[n-1]=\delta[n] \quad \text { and } \quad a^{n} \delta[n]=a^{0} \delta[n]=\delta[n]
$$

(b) (i) The system is not memoryless since $h[n] \neq k \delta[n]$.
(ii) The system is causal since $h[n]=0$ for $n<0$.
(iii) The system is stable for $|a|<1$ since

$$
\sum_{n=0}^{\infty}|a|^{n}=\frac{1}{1-|a|}
$$

is bounded.
(c) The system is not stable for $|a|>1$ since $\sum_{n=0}^{\infty}|a|^{n}$ is not finite.

S5. 3
(a) Consider $x(t)=\delta(t) \rightarrow y(t)=h(t)$. We want to verify that $h(t)=e^{-2 t} u(t)$, so

$$
\begin{aligned}
\frac{d y(t)}{d t} & =-2 e^{-2 t} u(t)+e^{-2 t} \delta(t), \quad \text { or } \\
\frac{d y(t)}{d t}+2 y(t) & =e^{-2 t} \delta(t),
\end{aligned}
$$

but $e^{-2 t} \delta(t)=\delta(t)$ because both functions have the same effect on a test function within an integral. Therefore, the impulse response is verified to be correct.
(b) (i) The system is not memoryless since $h(t) \neq k \delta(t)$.
(ii) The system is causal since $h(t)=0$ for $t<0$.
(iii) The system is stable since $h(t)$ is absolutely integrable.

$$
\begin{aligned}
\int_{-\infty}^{\infty}|h(t)| d t & =\int_{0}^{\infty} e^{-2 t} d t=-\left.\frac{1}{2} e^{-2 t}\right|_{0} ^{\infty} \\
& =\frac{1}{2}
\end{aligned}
$$

S5.4
By using the commutative property of convolution we can exchange the two systems to yield the system in Figure S5.4.

Figure S5.4
Now we note that the input to system L is

$$
\frac{d u(t)}{d t}=\delta(t)
$$

so $y(t)$ is the impulse response of system L. From the original diagram,

$$
\frac{d s(t)}{d t}=y(t)
$$

Therefore,

$$
h(t)=\frac{d s(t)}{d t}
$$

S5.5
(a) By definition, an inverse system cascaded with the original system is the identity system, which has an impulse response $h(t)=\delta(t)$. Therefore, if the cascaded system has an input of $\delta(t)$, the output $w(t)=h(t)=\delta(t)$.
(b) Because the system is an identity system, an input of $x(t)$ produces an output $w(t)=x(t)$.

Solutions to

Optional Problems

S5. 6

(a) If $y(t)=a y_{1}(t)+b y_{2}(t)$, we know that since system A is linear, $x(t)=a x_{1}(t)$ $+b x_{2}(t)$. Since the cascaded system is an identity system, the output $w(t)=$ $a x_{1}(t)+b x_{2}(t)$.

Figure S5.6-1
(b) If $y(t)=y_{1}(t-\tau)$, then since system A is time-invariant, $x(t)=x_{1}(t-\tau)$ and also $w(t)=x_{1}(t-\tau)$.

Figure S5.6-2
(c) From the solutions to parts (a) and (b), we see that system B is linear and timeinvariant.

S5.7
(a) The following signals are obtained by addition and graphical convolution:

$$
\begin{gathered}
(x[n]+w[n]) * y[n] \quad \text { (see Figure S5.7-1) } \\
x[n] * y[n]+w[n] * y[n] \quad \text { (see Figure S5.7-2) }
\end{gathered}
$$

Figure S5.7-1

Figure S5.7-2

Therefore, the distributive property $(x+w) * y=x * y+w * y$ is verified.
(b) Figure $\mathrm{S} 5.7-3$ shows the required convolutions and multiplications.

Figure S5.7-3
Note, therefore, that $(x[n] * y[n]) \cdot w[n] \neq x[n] *(y[n] \cdot w[n])$.

Consider

$$
\begin{aligned}
y(t)=x(t) * h(t) & =\int_{-\infty}^{\infty} x(t-\tau) h(\tau) d \tau \\
& =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
\end{aligned}
$$

(a) $y^{\prime}(t)=\int_{-\infty}^{\infty} x^{\prime}(t-\tau) h(\tau) d \tau=x^{\prime}(t) * h(t)$
$=\int_{-\infty}^{\infty} x(\tau) h^{\prime}(t-\tau) d \tau=x(t) * h^{\prime}(t)$,
where the primes denote $d / d t$.
(b) $y(t)=x(t) * h(t)$,
$y(t)=x(t) * u_{-1}(t) * u_{1}(t) * h(t)$,
$y(t)=\int_{-\infty}^{t} x(\tau) d \tau * h^{\prime}(t)$
(c) $y(t)=x(t) * h(t)$,
$y(t)=x(t) * u_{1}(t) * h(t) * u_{-1}(t)$,
$y(t)=\int_{-\infty}^{t} x^{\prime}(\tau) * h(\tau) d \tau$
(d) $y(t)=x(t) * h(t)$
$=x(t) * u_{1}(t) * h(t) * u_{-1}(t)$,
$y(t)=x^{\prime}(t) * \int_{-\infty}^{t} h(\tau) d \tau$
$\mathbf{S 5 . 9}$
(a) True.

$$
\int_{-\infty}^{\infty}|h(t)| d t=\sum_{k=-\infty}^{\infty} \int_{0}^{T}|h(t)| d t=\infty
$$

(b) False. If $h(t)=\delta\left(t-t_{0}\right)$ for $t_{0}>0$, then the inverse system impulse response is $\delta\left(t+t_{0}\right)$, which is noncausal.
(c) False. Suppose $h[n]=u[n]$. Then

$$
\sum_{n=-\infty}^{\infty}|h[n]|=\sum_{n=-\infty}^{\infty} u[n]=\infty
$$

(d) True, assuming $h[n]$ is finite-amplitude.

$$
\sum_{n=-\infty}^{\infty}|h[n]|=\sum_{n=-K}^{L}|h[n]|=M \quad \text { (a number) }
$$

(e) False. $h(t)=u(t)$ implies causality, but $\int_{-\infty}^{\infty} u(t) d t=\infty$ implies that the system is not stable.
(f) False.

$$
\begin{array}{rlrl}
h_{1}(t) & =\delta\left(t-t_{1}\right), & t_{1}>0 & \text { Causal } \\
h_{2}(t) & =\delta\left(t+t_{2}\right), & t_{2}>0 \quad \text { Noncausal } \\
h(t) & =h_{1}(t) * h_{2}(t)=\delta\left(t+t_{2}-t_{1}\right), \quad t_{2} \leq t_{1} \quad \text { Causal }
\end{array}
$$

(g) False. Suppose $h(t)=e^{-t} u(t)$. Then

$$
\int_{-\infty}^{\infty} e^{-t} u(t) d t=-\left.e^{-t}\right|_{0} ^{\infty}=1 \quad \text { Stable }
$$

The step response is

$$
\begin{aligned}
\int_{-\infty}^{\infty} u(t-\tau) e^{-\tau} u(\tau) d \tau & =\int_{0}^{t} e^{-\tau} d \tau \\
& =\left(1-e^{-t}\right) u(t) \\
\int_{0}^{\infty}\left(1-e^{-t}\right) d t & =t+\left.e^{-t}\right|_{0} ^{\infty}=\infty
\end{aligned}
$$

(h) True. We know that $u[n]=\sum_{k=0}^{\infty} \delta[n-k]$ and, from superposition, $s[n]=$ $\sum_{k=0}^{\infty} h[n-k]$. If $s[n] \neq 0$ for some $n<0$, there exists some value of $h[k] \neq 0$ for some $k<0$. If $s[n]=0$ for all $n<0, h[k]=0$ for all $k<0$.
$\mathbf{S 5 . 1 0}$
(a)

$$
\begin{aligned}
\int_{-\infty}^{\infty} g(\tau) u_{1}(\tau) d \tau & =-g^{\prime}(0) \\
g(\tau) & =x(t-\tau), \quad t \text { fixed, } \\
\int_{-\infty}^{\infty} x(t-\tau) u_{1}(\tau) d \tau & =-\left.\frac{d g(\tau)}{d \tau}\right|_{\tau=0}=-\left.\frac{d x(t-\tau)}{d \tau}\right|_{\tau=0} \\
& =\left.\frac{d x(t-\tau)}{d t}\right|_{\tau=0}=\frac{d x(t)}{d t}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{-\infty}^{\infty} g(t) f(t) u_{1}(t) d t & =-\left.\frac{d}{d t}[g(t) f(t)]\right|_{t=0} \\
& =-\left.\left[g^{\prime}(t) f(t)+g(t) f^{\prime}(t)\right]\right|_{t=0} \\
& =-\left[g^{\prime}(0) f(0)+g(0) f^{\prime}(0)\right], \\
\int g(t)\left[f(0) u_{1}(t)-f^{\prime}(0) \delta(t)\right] d t & =-f(0) g^{\prime}(0)-f^{\prime}(0) g(0)
\end{aligned}
$$

So when we use a test function $g(t), f(t) u_{1}(t)$ and $f(0) u_{1}(t)-f^{\prime}(0) \delta(t)$ both produce the same operational effect.
(c) $\int_{-\infty}^{\infty} x(\tau) u_{2}(\tau) d \tau=x(\tau) u,\left.(\tau)\right|_{-\infty} ^{0}-\int_{-\infty}^{\infty} \frac{d x}{d \tau} u_{1}(\tau) d \tau$
$=-\int_{-\infty}^{\infty} \frac{d x}{d \tau} u_{1}(\tau) d \tau=-\left.\frac{d x}{d \tau} u\left(\overrightarrow{1}_{\tau}^{0}\right)\right|_{-\infty} ^{\infty}+\int_{-\infty}^{\infty} \frac{d^{2} x}{d \tau^{2}} u_{0}(\tau) d \tau$ $=\left.\frac{d^{2} x}{d \tau^{2}}\right|_{\tau=0}$
(d) $\int g(\tau) f(\tau) u_{2}(\tau) d \tau=g^{\prime \prime}(\tau) f(\tau)+2 g^{\prime}(\tau) f^{\prime}(\tau)+\left.g(\tau) f^{\prime \prime}(\tau)\right|_{\tau=0}$

Noting that $\left.2 g^{\prime}(\tau) f^{\prime}(\tau)\right|_{\tau=0}=-2 f^{\prime}(0) \int g(\tau) u_{1}(\tau) d \tau$, we have an equivalent operational definition:

$$
f(\tau) u_{2}(\tau)=f(0) u_{2}(\tau)-2 f^{\prime}(0) u_{1}(\tau)+f^{\prime \prime}(0) \delta(\tau)
$$

S5. 11
(a) $h(t) * g(t)=\int_{-\infty}^{\infty} h(t-\tau) g(\tau) d \tau=\int_{0}^{t} h(t-\tau) g(\tau) d \tau$ since $h(t)=0$ for $t<0$ and $g(t)=0$ for $t<0$. But if $t<0$, this integral is obviously zero. Therefore, the cascaded system is causal.
(b) By the definition of stability we know that for any bounded input to H , the output of H is also bounded. This output is also the input to system G. Since the input to G is bounded and G is stable, the output of G is bounded. Therefore, a bounded input to the cascaded system produces a bounded output. Hence, this system is stable.

S5. 12
We have a total system response of

$$
\begin{aligned}
& h=\left\{\left[\left(h_{1} * h_{2}\right)+\left(h_{2} * h_{2}\right)-\left(h_{2} * h_{1}\right)\right] * h_{1}+h_{1}^{-1}\right\} * h_{2}^{-1} \\
& h=\left(h_{2} * h_{1}\right)+\left(h_{1}^{-1} * h_{2}^{-1}\right)
\end{aligned}
$$

$\mathbf{S 5 . 1 3}$
We are given that $y[n]=x[n] * h[n]$.

$$
\begin{aligned}
y[n] & =\sum_{k=-\infty}^{\infty} x[n-k] h[k] \\
|y[n]| & =\left|\sum_{k=-\infty}^{\infty} x[n-k] h[k]\right| \\
\max \{|y[n]|\} & =\max \left\{\left|\sum_{k=-\infty}^{\infty} x[n-k] h[k]\right|\right\} \\
& \leq \max \sum_{k=-\infty}^{\infty}|x[n-k]||h[k]| \\
& \leq \sum_{k=-\infty}^{\infty} \max \{|x[n-k]|\}|h[k]| \\
& =\max \{|x[n]|\} \sum_{k=-\infty}^{\infty}|h[k]|
\end{aligned}
$$

We can see from the inequality

$$
\max \{|y[n]|\} \leq \max \{|x[n]|\} \sum_{k=-\infty}^{\infty}|h[k]|
$$

that $\sum_{k=-\infty}^{\infty}|h[k]| \leq 1 \Rightarrow \max \{|y[n]|\} \leq \max \{|x[n]|\}$. This means that $\sum_{k=-\infty}^{\infty}|h[k]|$ ≤ 1 is a sufficient condition. It is necessary because some $x[n]$ always exists that yields $y[n]=\sum_{k=-\infty}^{\infty}|h[k]|$. ($x[n]$ consists of a sequence of +1 's and -1 's.) Therefore, since $\max \{x[n]\}=1$, it is necessary that $\sum_{k=-\infty}^{\infty}|h[k]| \leq 1$ to ensure that $y[n]$ $\leq \max \{|x[n]|\}=1$.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

