4 Convolution

Solutions to
 Recommended Problems

S4. 1
The given input in Figure S4.1-1 can be expressed as linear combinations of $x_{1}[n]$, $x_{2}[n], x_{3}[n]$.

(a) $x_{4}[n]=2 x_{1}[n]-2 x_{2}[n]+x_{3}[n]$
(b) Using superposition, $y_{4}[n]=2 y_{1}[n]-2 y_{2}[n]+y_{3}[n]$, shown in Figure S4.1-2.

Figure S4.1-2
(c) The system is not time-invariant because an input $x_{1}[n]+x_{1}[n-1]$ does not produce an output $y_{1}[n]+y_{1}[n-1]$. The input $x_{1}[n]+x_{1}[n-1]$ is $x_{1}[n]+$ $x_{1}[n-1]=x_{2}[n]$ (shown in Figure S4.1-3), which we are told produces $y_{2}[n]$. Since $y_{2}[n] \neq y_{1}[n]+y_{1}[n-1]$, this system is not time-invariant.

Figure S4.1-3

The required convolutions are most easily done graphically by reflecting $x[n]$ about the origin and shifting the reflected signal.
(a) By reflecting $x[n]$ about the origin, shifting, multiplying, and adding, we see that $y[n]=x[n] * h[n]$ is as shown in Figure S4.2-1.

(b) By reflecting $x[n]$ about the origin, shifting, multiplying, and adding, we see that $y[n]=x[n] * h[n]$ is as shown in Figure S4.2-2.

Notice that $y[n]$ is a shifted and scaled version of $h[n]$.

S4.3
(a) It is easiest to perform this convolution graphically. The result is shown in Figure S4.3-1.

Figure S4.3-1
(b) The convolution can be evaluated by using the convolution formula. The limits can be verified by graphically visualizing the convolution.

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} e^{-(\tau-1)} u(\tau-1) u(t-\tau+1) d \tau \\
& = \begin{cases}\cdot \int_{1}^{t+1} e^{-(\tau-1)} d \tau, \quad t>0, \\
0, & t<0,\end{cases}
\end{aligned}
$$

Let $\tau^{\prime}=\tau-1$. Then

$$
y(t)= \begin{cases}\int_{0}^{t} e^{-\tau^{\prime}} d \tau^{\prime} \\ 0 & = \begin{cases}1-e^{-t}, & t>0 \\ 0, & t<0\end{cases} \end{cases}
$$

(c) The convolution can be evaluated graphically or by using the convolution formula.

$$
y(t)=\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau-2) d \tau=x(t-2)
$$

So $y(t)$ is a shifted version of $x(t)$.

Figure S4.3-2
(a) Since $y[n]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]$,

$$
y[n]=\sum_{m=-\infty}^{\infty} \delta\left[m-n_{0}\right] h[n-m]=h\left[n-n_{0}\right]
$$

We note that this is merely a shifted version of $h[n]$.

Figure S4.4-1
(b) $y[n]=\sum_{m=-\infty}^{\infty}\left(\frac{1}{2}\right)^{m} u[m] u[n-m]$

$$
\begin{array}{ll}
\text { For } n>0: & y[n]=\sum_{m=0}^{n}\left(\frac{1}{2}\right)^{m}=\frac{1-\left(\frac{1}{2}\right)^{n+1}}{1-\frac{1}{2}}=2\left(1-\left(\frac{1}{2}\right)^{n+1}\right) \\
\text { For } n<0: & y[n]=2-\left(\frac{1}{2}\right)^{n} \\
y[n]=0
\end{array}
$$

Here the identity

$$
\sum_{m=0}^{N-1} a^{m}=\frac{1-a^{N}}{1-a}
$$

has been used.

Figure S4.4-2
(c) Reversing the role of the system and the input has no effect on the output because

$$
y[n]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]=\sum_{m=-\infty}^{\infty} h[m] x[n-m]
$$

The output and sketch are identical to those in part (b).
(a) (i) Using the formula for convolution, we have

$$
\begin{aligned}
y_{1}(t) & =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} u(\tau) e^{-(t-\tau) / 2} u(t-\tau) d \tau \\
& =\int_{0}^{t} e^{-(t-\tau) / 2} d \tau, \quad t>0, \\
& =\left.2 e^{-(t-\tau) / 2}\right|_{0} ^{t}=2\left(1-e^{-t / 2}\right), \quad t>0, \\
y(t) & =0, \quad t<0
\end{aligned}
$$

Figure S4.5-1
(ii) Using the formula for convolution, we have

$$
\begin{aligned}
y_{2}(t) & =\int_{0}^{t} 2 e^{-(t-\tau) / 2} d \tau, \quad 3 \geq t \geq 0, \\
& =4\left(1-e^{-t / 2}\right), \quad 3 \geq t \geq 0, \\
y_{2}(t) & =\int_{0}^{3} 2 e^{-(t-\tau) / 2} d \tau, \quad t \geq 3, \\
& =\left.4 e^{-(t-\tau) / 2}\right|_{0} ^{3}=4\left(e^{-(t-3) / 2}-e^{-t / 2}\right) \\
& =4 e^{-t / 2}\left(e^{3 / 2}-1\right), \quad t \geq 3, \\
y_{2}(t) & =0, \quad t \leq 0
\end{aligned}
$$

Figure S4.5-2
(b) Since $x_{2}(t)=2\left[x_{1}(t)-x_{1}(t-3)\right]$ and the system is linear and time-invariant, $y_{2}(t)=2\left[y_{1}(t)-y_{1}(t-3)\right]$.

$$
\begin{aligned}
\text { For } 0 \leq t \leq 3: & & y_{2}(t) & =2 y_{1}(t)=4\left(1-e^{-t / 2}\right) \\
\text { For } 3 \leq t: & & y_{2}(t) & =2 y_{1}(t)-2 y_{1}(t-3) \\
& & & =4\left(1-e^{-t / 2}\right)-4\left(1-e^{-(t-3) / 2}\right) \\
& & & =4 e^{-t / 2}\left[e^{3 / 2}-1\right] \\
& \text { For } t<0: & y_{2}(t) & =0
\end{aligned}
$$

We see that this result is identical to the result obtained in part (a)(ii).

Solutions to Optional Problems

S4.6

(a)

Figure S4.6-1

Figure S4.6-3

Figure S4.6-4

Figure S4.6-5

Using these curves, we see that since $y(t)=x(t) * h(t), y(t)$ is as shown in Figure S4.6-6.

(b) Consider $y(t)=x(t) * h(t)=\int_{-\infty}^{\infty} x(t-\tau) h(\tau) d \tau$.

Figure S4.6-7
For $0<t<1$, only one impulse contributes.

Figure S4.6-8
For $1<t<2$, two impulses contribute.

Figure S4.6-9

For $2<t<3$, two impulses contribute.

Figure S4.6-10
For $3<t<4$, one impulse contributes.

Figure S4.6-11
For $t<0$ or $t>4$, there is no contribution, so $y(t)$ is as shown in Figure S4.6-12.

Figure S4.6-12

$$
\begin{aligned}
y[n] & =x[n] * h[n] \\
& =\sum_{m=-\infty}^{\infty} x[n-m] h[m] \\
& =\sum_{m=-\infty}^{\infty} \alpha^{n-m} u[n-m] \beta^{m} u[m] \\
& =\sum_{m=0}^{n} \alpha^{n-m} \beta^{m}, \quad n>0,
\end{aligned}
$$

$$
\begin{aligned}
y[n] & =\alpha^{n} \sum_{m=0}^{n}\left(\frac{\beta}{\alpha}\right)^{m}=\alpha^{n}\left[\frac{1-(\beta / \alpha)^{n+1}}{1-(\beta / \alpha)}\right] \\
& =\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}, \quad n \geq 0 \\
y[n] & =0, \quad n<0
\end{aligned}
$$

S4.8
(a) $x(t)=\sum_{k=-\infty}^{\infty} \delta(t-k T)$ is a series of impulses spaced T apart.

Figure S4.8-1
(b) Using the result $x(t) * \delta\left(t-t_{0}\right)=x\left(t_{0}\right)$, we have

Figure S4.8-2
So $y(t)=x(t) * h(t)$ is as shown in Figure S4.8-3.

Figure S4.8-3
(a) False. Counterexample: Let $g[n]=\delta[n]$. Then

$$
\begin{aligned}
& x[n] *\{h[n] g[n]\}=x[n] \cdot h[0] \\
& \{x[n] * h[n]\} g[n]=\left.\delta[n] \cdot[x[n] * h[n]]\right|_{n=0}
\end{aligned}
$$

and $x[n]$ may in general differ from $\delta[n]$.
(b) True.

$$
y(2 t)=\int_{-\infty}^{\infty} x(2 t-\tau) h(\tau) d \tau
$$

Let $\tau^{\prime}=\tau / 2$. Then

$$
\begin{aligned}
y(2 t) & =\int_{-\infty}^{\infty} x\left(2 t-2 \tau^{\prime}\right) h\left(2 \tau^{\prime}\right) 2 d \tau^{\prime} \\
& =2 x(2 t) * h(2 t)
\end{aligned}
$$

(c) True.

$$
\begin{aligned}
y(t) & =x(t) * h(t) \\
y(-t) & =x(-t) * h(-t) \\
& =\int_{-\infty}^{\infty} x(-t+\tau) h(-\tau) d \tau=\int_{-\infty}^{\infty}[-x(t-\tau)][-h(\tau)] d \tau \\
& =\int_{-\infty}^{\infty} x(t-\tau) h(\tau) d \tau \quad \text { since } x(\cdot) \text { and } h(\cdot) \text { are odd functions } \\
& =y(t)
\end{aligned}
$$

Hence $y(t)=y(-t)$, and $y(t)$ is even.
(d) False. Let

$$
\begin{aligned}
& x(t)=\delta(t-1) \\
& h(t)=\delta(t+1), \\
& y(t)=\delta(t), \quad E v\{y(t)\}=\delta(t)
\end{aligned}
$$

Then

$$
\begin{aligned}
x(t) * E v\{h(t)\} & =\delta(t-1) * \frac{1}{2}[\delta(t+1)+\delta(t-1)] \\
& =\frac{1}{2}[\delta(t)+\delta(t-2)] \\
E v\{x(t)\} * h(t) & =\frac{1}{2}[\delta(t-1)+\delta(t+1)] * \delta(t+1) \\
& =\frac{1}{2}[\delta(t)+\delta(t+2)]
\end{aligned}
$$

But since $\frac{1}{2}[\delta(t-2)+\delta(t+2)] \neq 0$,

$$
E v\{y(t)\} \neq x(t) * E v\{h(t)\}+E v\{x(t)\} * h(t)
$$

(a) $\quad \tilde{y}(t)=\int_{0}^{T_{0}} \tilde{x}_{1}(\tau) \tilde{x}_{2}(t-\tau) d \tau$,

$$
\begin{aligned}
\tilde{y}\left(t+T_{0}\right) & =\int_{0}^{T_{0}} \tilde{x}_{1}(\tau) \tilde{x}_{2}\left(t+T_{0}-\tau\right) d \tau \\
& =\int_{0}^{T_{0}} \tilde{x}_{1}(\tau) \tilde{x}_{2}(t-\tau) d \tau=\tilde{y}(t)
\end{aligned}
$$

(b)

$$
\begin{aligned}
\tilde{y}_{a}(t) & =\int_{a}^{a+T_{0}} \tilde{x}_{1}(\tau) \tilde{x}_{2}(t-\tau) d \tau \\
a & =k T_{0}+b, \quad \text { where } 0 \leq b \leq T_{0}, \\
\tilde{y}_{a}(t) & =\int_{k T_{0}+b}^{(k+1) T_{0}+b} \tilde{x}_{1}(\tau) \tilde{x}_{2}(t-\tau) d \tau \\
\tilde{y}_{a}(t) & =\int_{b}^{T_{0}+b} \tilde{x}_{1}(\tau) \tilde{x}_{2}(t-\tau) d \tau, \quad \tau^{\prime}=\tau-b \\
& =\int_{b}^{T_{0}} \tilde{x}_{1}(\tau) \tilde{x}_{2}(t-\tau) d \tau+\int_{T_{0}}^{T_{0}+b} \tilde{x}_{1}(\tau) \tilde{x}_{2}(t-\tau) d \tau \\
& =\int_{b}^{T_{0}} \tilde{x}_{1}(\tau) \tilde{x}_{2}(t-\tau) d \tau+\int_{0}^{b} \tilde{x}_{1}(\tau) \tilde{x}_{2}(t-\tau) d \tau \\
& =\int_{0}^{T_{0}} \tilde{x}_{1}(\tau) \tilde{x}_{2}(t-\tau) d \tau=\tilde{y}(t)
\end{aligned}
$$

(c) For $0 \leq t \leq \frac{1}{2}$:

$$
\begin{aligned}
\tilde{y}(t) & =\int_{0}^{t} e^{-\tau} d \tau+\int_{1 / 2+t}^{1} e^{-\tau} d \tau \\
& =\left(-\left.e^{-\tau}\right|_{0} ^{t}\right)+\left(-\left.e^{-\tau}\right|_{1 / 2+t} ^{1}\right), \\
\tilde{y}(t) & =1-e^{-t}+e^{-(t+1 / 2)}-e^{-1}=1-e^{-1}+\left(e^{-1 / 2}-1\right) e^{-t}
\end{aligned}
$$

For $\frac{1}{2} \leq t \leq 1$:

$$
\begin{aligned}
\tilde{y}(t) & =\int_{t-1 / 2}^{t} e^{-\tau} d \tau=e^{-(t-1 / 2)}-e^{-t} \\
& =\left(e^{1 / 2}-1\right) e^{-t}
\end{aligned}
$$

(d) Performing the periodic convolution graphically, we obtain the solution as shown in Figure S4.10-1.

Figure S4.10-1
(e)

Figure S4.10-2

S4.11
(a) Since $y(t)=x(t) * h(t)$ and $x(t)=g(t) * y(t)$, then $g(t) * h(t)=\delta(t)$. But

$$
\begin{aligned}
g(t) * h(t) & =\int_{-\infty}^{\infty} \sum_{k=0}^{\infty} g_{k} \delta(t-\tau-k T) \sum_{l=0}^{\infty} h_{l} \delta(\tau-l T) d \tau \\
& =\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} g_{k} h_{l} \delta(t-(l+k) T)
\end{aligned}
$$

Let $n=l+k$. Then $l=n-k$ and

$$
g(t) * h(t)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} g_{k} h_{n-k}\right) \delta(t-n T)
$$

So

$$
\sum_{k=0}^{n} g_{k} h_{n-k}= \begin{cases}1, & n=0 \\ 0, & n \neq 0\end{cases}
$$

Therefore,

$$
\begin{aligned}
& g_{0}=1 / h_{0} \\
& g_{1}=-h_{1} / h_{0}^{2} \\
& g_{2}=\frac{-1}{h_{0}}\left(\frac{-h_{1}^{2}}{h_{0}^{2}}+\frac{h_{2}}{h_{0}}\right) \cdots
\end{aligned}
$$

(b) We are given that $h_{0}=1, h_{1}=\frac{1}{2}, h_{i}=0$. So

$$
\begin{aligned}
& g_{0}=1 \\
& g_{1}=-\frac{1}{2} \\
& g_{2}=+\left(\frac{1}{2}\right)^{2}, \\
& g_{3}=-\left(\frac{1}{2}\right)^{3} \ldots
\end{aligned}
$$

Therefore,

$$
g(t)=\sum_{k=0}^{\infty}\left(-\frac{1}{2}\right)^{k} \delta(t-k T)
$$

(c) (i) Each impulse is delayed by T and scaled by α, so

$$
h(t)=\sum_{k=0}^{\infty} \alpha^{k}(t-k T)
$$

(ii) If $0<\alpha<1$, a bounded input produces a bounded output because

$$
\begin{aligned}
y(t) & =x(t) * h(t) \\
|y(t)| & <\sum_{k=0}^{\infty} \alpha^{k}\left|\int_{-\infty}^{\infty} \delta(\tau-k T) x(t-\tau) d \tau\right| \\
& <\sum_{k=0}^{\infty} \alpha^{k} \int_{-\infty}^{\infty} \delta(\tau-k T)|x(t-\tau)| d \tau
\end{aligned}
$$

Let $M=\max |x(t)|$. Then

$$
|y(t)|<M \sum_{k=0}^{\infty} \alpha^{k}=M \frac{1}{1-\alpha}, \quad|\alpha|<1
$$

If $\alpha>1$, a bounded input will no longer produce a bounded output. For example, consider $x(t)=u(t)$. Then

$$
y(t)=\sum_{k=0}^{\infty} \alpha^{k} \int_{-\infty}^{t} \delta(\tau-k T) d \tau
$$

Since $\int_{-\infty}^{t} \delta(\tau-k T) d \tau=u(t-k T)$,

$$
y(t)=\sum_{k=0}^{\infty} \alpha^{k} u(t-k T)
$$

Consider, for example, t equal to (or slightly greater than) $N T$:

$$
y(N T)=\sum_{k=0}^{N} \alpha^{k}
$$

If $\alpha>1$, this grows without bound as N (or t) increases.
(iii) Now we want the inverse system. Recognize that we have actually solved this in part (b) of this problem.

$$
\begin{aligned}
g_{1} & =1 \\
g_{2} & =-\alpha \\
g_{i} & =0, \quad i \neq 0,1
\end{aligned}
$$

So the system appears as in Figure S4.11.

Figure $\mathbf{S 4 . 1 1}$
(d) If $x[n]=\delta[n]$, then $y[n]=h[n]$. If

$$
x[n]=\frac{1}{2} \delta[n]+\frac{1}{2} \delta[n-N]
$$

then

$$
\begin{aligned}
& y[n]=\frac{1}{2} h[n]+\frac{1}{2} h[n] \\
& y[n]=h[n]
\end{aligned}
$$

S4.12
(a) $\delta[n]=\phi[n]-\frac{1}{2} \phi[n-1]$,
$x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]=\sum_{k=-\infty}^{\infty} x[k]\left(\phi[n-k]-\frac{1}{2} \phi[n-k-1]\right)$,
$x[n]=\sum_{k=-\infty}^{\infty}\left(x[k]-\frac{1}{2} x[k-1]\right) \phi[n-k]$
So $a_{k}=x[k]-\frac{1}{2} x[k-1]$.
(b) If $r[n]$ is the response to $\phi[n]$, we can use superposition to note that if

$$
x[n]=\sum_{k=-\infty}^{\infty} a_{k} \phi[n-k],
$$

then

$$
y[n]=\sum_{k=-\infty}^{\infty} a_{k} r[n-k]
$$

and, from part (a),

$$
y[n]=\sum_{k=-\infty}^{\infty}\left(x[k]-\frac{1}{2} x[k-1]\right) r[n-k]
$$

(c) $y[n]=\psi[n] * x[n] * r[n]$ when

$$
\psi[n]=\delta[n]-\frac{1}{2} \delta[n-1]
$$

and, from above,

$$
\delta[n]=\phi[n]-\frac{1}{2} \phi[n-1]
$$

So
(d)

$$
\begin{aligned}
& \psi[n]=\phi[n]-\frac{1}{2} \phi[n-1]-\frac{1}{2}\left(\phi[n-1]-\frac{1}{2} \phi[n-2]\right), \\
& \psi[n]=\phi[n]-\phi[n-1]+\frac{1}{4} \phi[n-2] \\
& \phi[n] \rightarrow r[n], \\
& \phi[n-1] \rightarrow r[n-1], \\
& \delta[n]=\phi[n]-\frac{1}{2} \phi[n-1] \rightarrow r[n]-\frac{1}{2} r[n-1]
\end{aligned}
$$

So

$$
h[n]=r[n]-\frac{1}{2} r[n-1]
$$

where $h[n]$ is the impulse response. Also, from part (c) we know that

$$
y[n]=\psi[n] * x[n] * r[n]
$$

and if $x[n]=\phi[n]$ produces $r[n]$, it is apparent that $\phi[n] * \psi[n]=\delta[n]$.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

