MIT OpenCourseWare http://ocw.mit.edu

Solutions Manual for Electromechanical Dynamics

For any use or distribution of this solutions manual, please cite as follows:

Woodson, Herbert H., James R. Melcher, and Markus Zahn. *Solutions Manual for Electromechanical Dynamics*. vol. 3. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-NonCommercial-Share Alike

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

Part a

We can specify the relevant variables as

$$\overline{\mathbf{v}} = \overline{\mathbf{i}}_{1} \mathbf{v}_{1}(\mathbf{x}_{2})$$

$$\overline{\mathbf{E}} = \overline{\mathbf{i}}_{2} \mathbf{E}_{2}(\mathbf{x}_{2}) + \mathbf{i}_{3} \mathbf{E}_{3}(\mathbf{x}_{2})$$

$$\overline{\mathbf{J}} = \overline{\mathbf{i}}_{2} \mathbf{J}_{0}$$

$$\overline{\mathbf{B}} = \overline{\mathbf{i}} \mathbf{B}_{1} + \overline{\mathbf{i}} \mathbf{B}_{1}(\mathbf{x}_{2})$$
(a)

 $B = i_2 B_0 + i_1 B_1 (x_3)$ The x component of the momentum equation is

$$0 = \mu \frac{\partial v_1}{\partial x_2^2}$$
 (b)

with solution 2

 $v_1 = C_1 x_2 + C_2$ Applying the boundary conditions

$$v_1 = 0$$
 $(d_2 = 0)$ (c)
 $v_1 = v_0$ $(d_2 = d)$

We obtain

$$v_1 = \frac{v_0 x_2}{d}$$
(d)

We note that there is no magnetic force density since the imposed current and magnetic field are colinear. We apply Ohm's law for a moving fluid

$$\overline{J} = \sigma(\overline{E} + \overline{v} \times \overline{B})$$
(e)

in the x_2 and x_3 directions to obtain

$$J_{0} = \sigma E_{2}$$
 (f)

and

and

$$0 = \sigma(E_3 + v_1 B_0)$$
 (g)

since no current can flow in the x₃ direction.

Thus $E_2 = \frac{J_0}{\sigma}$ (h)

$$E_{3} = -\frac{v_{0}x_{2}b_{0}}{d}$$
(1)

As from Eq. (14.2.5),

$$V = \int_0^d E_2 dx_2 = \frac{J_0}{\sigma} d$$
 (j)

Thus, the electrical input p_e per unit area in an $x_1 - x_3$ plane is

$$p_{e} = J_{o}V = \frac{J_{o}^{2} d}{\sigma}$$
(k)

PROBLEM 14.1 (continued)

We see that this power is dissipated as Ohmic loss. The moving fluid looks just like a resistor from the electrical terminals. The traction that must be applied to the upper plate to maintain the steady motion is

$$\tau = \mu \frac{\partial v_1}{\partial x_2} \bigg|_{x_2 = d} = \frac{\mu v_0}{d}$$
(1)

Again we note no contribution from the magnetic forces.

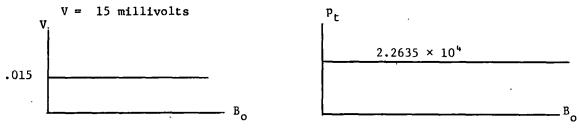
The mechanical input power per unit area is then

$$P_{\rm m} = \tau_1 v_0 = \frac{\mu v_0^2}{d} \tag{m}$$

The total input power per unit area is thus

$$p_t = p_e + p_m = \frac{\mu v_o^2}{d} + \frac{J_o^2 d}{\sigma}$$
 (n)

The first term is due to viscous loss that results from simple shear flow, while the second term is simply the Joule loss associated with Ohmic heating. There is no electromechanical coupling. Using the parameters from Table 14.2.1, we obtain



and

 $p_t = 2.2635 \times 10^4 \text{ watts/m}^2$, independent of B_o . These results correspond to the plots of Fig. 14.2.3 in the limit as $B_o \neq 0$.

We see that the brush losses and brush voltage are much less for this configuration than for that analyzed in Sec. 14.2.1. This is because the electrical and mechanical equations were uncoupled when the applied flux density was in the x_2 direction. This configuration is better, because low voltages at the brush eliminate arcing, and because the net power input per unit area is lessno matter the field strength B₂.

The only effect of applying a flux density in the x_2 direction was to cause an electric field in the x_3 direction. However, since there was no current flow in the x_3 direction, there was no additional dissipated power. However, if E_3 became too large, the fluid might experience electrical breakdown, resulting in corona arcs.

PROBLEM 14.2

The momentum equation for the fluid is

$$\rho \frac{\partial \overline{\mathbf{v}}}{\partial t} + \rho (\overline{\mathbf{v}} \cdot \nabla) \overline{\mathbf{v}} = -\nabla p + \mu \nabla^2 \overline{\mathbf{v}}$$
(a)

We consider solutions of the form

 $\vec{v} = \vec{i}_z v_z(r)$

and

as

p = p(z).

Then in the steady state, we write the z component of (a) in cylindrical coordinates

$$\frac{\partial \mathbf{p}}{\partial z} = \mu \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial \mathbf{v}_z}{\partial r}$$
(b)

Now, the left side of (b) is only a function of z, while the right side is only a function of r. Thus, from the given information

$$\frac{\partial p}{\partial z} = \frac{P_2 - P_1}{L}$$
(c)

Using the results of (c) in (b), we solve for $v_{z}(r)$ in the form

.

$$v_{z}(r) = \frac{p_{2} - p_{1}}{4L\mu} r^{2} + A \ln r + B$$
 (d)

where A and B are arbitrary constants to be evaluated by the boundary conditions

 $v_r (r = 0)$ is finite

and

$$\mathbf{v}_{\mathbf{z}}(\mathbf{r}=\mathbf{R})=0$$

Thus the solution is

$$v_z(r) = \frac{(p_2 - p_1)}{4 \,\mu L} (r^2 - R^2)$$
 (e)

We can also find relations between the flow rate and the pressure difference, since

$$\int_{0}^{R} \mathbf{v}_{z} 2\pi \mathbf{r} d\mathbf{r} = 0$$

PROBLEM 14.3

Part a

We are given the pressure drop Δp , the magnetic field B, the conductivity σ , and the dimensions of the system.

Now
$$\mathbf{i} = \int_{-d}^{+d} \mathbf{J} \mathbf{k} d\mathbf{x}_2 = \sigma \mathbf{k} \int_{-d}^{+d} (\mathbf{E}_3 + \mathbf{v}_1 \mathbf{B}_0) d\mathbf{x}_2 = \frac{\mathbf{V}}{\mathbf{R}}$$
 (a) where $-d$

whe

k s

 $V = -\frac{E}{w}$ is defined as the voltage across the resistor.

From Eq. (14.2.29), we have the solution for the velocity v_1 . We then perform the integrations of (a) and solve for the voltage V to obtain

PROBLEM 14.3(continued)

$$V = \frac{\frac{(\Delta p) 2d}{B_o} \left(1 - \frac{\tanh M}{M}\right)}{\frac{1}{R} + \frac{2\sigma \ell d}{w} \frac{\tanh M}{M}}$$

2

where

 $M = B_{o}d(\frac{\sigma}{\mu})^{\frac{1}{2}}$ Then, the power p^e dissipated in the resistor is 2

$$p^{e} = \frac{V^{2}}{R} = \frac{\left(\frac{\Delta p \ 2d}{B_{o}}\right) \left(1 - \frac{\tanh M}{M}\right)}{\left(\frac{1}{R} + \frac{1}{R_{i}} \frac{\tanh M}{M}\right)^{2} R}$$
(c)

where we have defined the internal resistance R_{t} as

$$R_i = \frac{w}{2\sigma ld}$$

Part b

— To maximize p^e, we differentiate (c) with respect to R, solve for that value of R which makes this quantity zero, and then check that this value does indeed maximize p^e. Performing these operations, we obtain

$$R_{\max} = \frac{M R_{i}}{\tanh M}$$
 (d)

Part c

We must convert the given numerical values to MKS units, using the conversions

10,000 gauss = 1 Weber/meter²

100 cm = 1 meterand

For mercury

 $\sigma = 10^6 \text{ mhos/m}$

and $\mu = 1.5 \times 10^{-3} \text{ kg/m-sec.}$

Thus

$$M = B_{o}d(\frac{\sigma}{\mu})^{\frac{1}{2}} = 2 \times 10^{-2} \left(\frac{1}{1.5} \times 10^{9}\right)^{\frac{1}{2}}$$

$$M = 520$$

Then tanh M 没 1

and so

$$R_{\text{max}} = 520 \left(\frac{10^{-1}}{2 \times 10^6 \times 10^{-2}} \right) \approx 2.60 \times 10^{-3} \text{ ohms.}$$

(b)