MIT OpenCourseWare
http://ocw.mit.edu

Solutions Manual for Electromechanical Dynamics

For any use or distribution of this solutions manual, please cite as follows:
Woodson, Herbert H., James R. Melcher, and Markus Zahn. Solutions Manual for Electromechanical Dynamics. vol. 3. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-NonCommercial-Share Alike

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

PROBLLEM 13.1

In static equilibrium, we have

$$
\begin{equation*}
-\nabla \mathrm{p}-\rho \mathrm{g} \overline{\mathrm{i}}_{\mathrm{l}}=0 \tag{a}
\end{equation*}
$$

Since $p=\rho R T$, (a) may be rewritten as

$$
\begin{equation*}
R T \frac{d \rho}{d x_{1}}+\rho g=0 \tag{b}
\end{equation*}
$$

Solving, we obtain

$$
\begin{equation*}
\rho=\rho_{0} e^{-\frac{g}{R T} x_{1}} \tag{c}
\end{equation*}
$$

PROBLEM 13.2
Since the pressure is a constant, Eq. (13.2.25) reduces to

$$
\begin{equation*}
\rho v \frac{d v}{d z}=-J_{y} B \tag{a}
\end{equation*}
$$

where we use the coordinate system defined in Fig. 13P.4. Now, from Eq. (13.2.21) we obtain

$$
\begin{equation*}
J_{y}=\sigma\left(E_{y}+v B\right) \tag{b}
\end{equation*}
$$

If the loading factor K, defined by Eq. (13.2.32) is constant, then

$$
\begin{equation*}
-K v B=+E \tag{c}
\end{equation*}
$$

Thus, $J_{y}=\sigma v B(1-K)$
Then

$$
\begin{equation*}
\rho v \frac{d v}{d z}=-\sigma v B^{2}(1-K) \tag{d}
\end{equation*}
$$

or

$$
\begin{equation*}
\rho \frac{d v}{d z}=-\sigma B^{2}(1-K)=-\sigma(1-K) \frac{B_{i}^{2} A_{i}}{A(z)} \tag{e}
\end{equation*}
$$

From conservation of mass, Eq. (13.2.24), we have

$$
\rho_{i} v_{i} A_{i}=\rho A(z) v
$$

(g)

Thus

$$
\begin{equation*}
\frac{\rho_{i} v_{i} A_{i}}{v} \frac{d v}{d z}=-\sigma(1-K) B_{i}^{2} A_{i} \tag{h}
\end{equation*}
$$

Integrating, we obtain

$$
\begin{equation*}
\ln v=\frac{-\sigma(1-K) B_{i}^{2}}{\rho_{i} v_{i}} z+C \tag{i}
\end{equation*}
$$

or

$$
\begin{equation*}
v=v_{i} e^{-\frac{z}{\ell}} d \tag{j}
\end{equation*}
$$

where $\ell_{d}=\frac{\rho_{i} v_{i}}{\sigma(1-K) B_{i}^{2}} \quad$ and we evaluate the arbitrary constant by realizing that $v=v_{i}$ at $z=0$.

PROBLEM 13.3

Part a

We assume $T, B_{o}, w, \sigma, c_{p}$ and c_{v} are constant. Since the electrodes are shortcircuited, $E=0$, and so

$$
\begin{equation*}
J_{y}=v B_{0} \tag{a}
\end{equation*}
$$

We use the coordinate system defined in Fig. 13P.4. Applying conservation of energy, Eq. (13.2.26), we have

$$
\begin{equation*}
\rho v \frac{d}{d z}\left(\frac{1}{2} v^{2}\right)=0 \text {, where we have set } h=\text { constant. } \tag{b}
\end{equation*}
$$

Thus, v is a constant, $v=v_{i}$. Conservation of momentum, Eq. (13.2.25), implies

$$
\begin{equation*}
\frac{d p}{d z}=-v_{i} B_{o}^{2} \tag{c}
\end{equation*}
$$

Thus, $p=-v_{i} B_{o}^{2} z+p_{i}$
The mechanical equation of state, Eq. (13.1.10) then implies

$$
\begin{equation*}
\rho=\frac{n}{R T}=-\frac{v_{i} B_{o}^{2} z+p_{i}}{R T}=\rho_{i}-\frac{v_{i} B_{o}^{2} z}{R T} \tag{e}
\end{equation*}
$$

From conservation of mass, we then obtain

$$
\begin{equation*}
\rho_{i} v_{i} w d_{i}=\left(-\frac{v_{i} B_{o}^{2} z}{R T}+\rho_{i}\right) v_{i} w d(z) \tag{f}
\end{equation*}
$$

Thus

Part b

$$
\begin{equation*}
d(z)=\frac{\rho_{i} d_{i}}{\left(\rho_{i}-\frac{v_{i} B_{o}^{2} z}{R T}\right)} \tag{g}
\end{equation*}
$$

Then

$$
\begin{equation*}
\rho(z)=\rho_{i}-\frac{v_{i} B_{o}^{2} z}{R T} \tag{h}
\end{equation*}
$$

PROBLEM 13.4
Note:
There are errors in Eqs. (13.2.16) and (13.2.31). They should read:

$$
\begin{equation*}
\frac{1}{M^{2}} \frac{d\left(M^{2}\right)}{d x_{1}}=\frac{\left\{(\gamma-1)\left(1+\gamma \mathrm{M}^{2}\right) E_{3}+\gamma\left[2+(\gamma-1) M^{2}\right] v_{1} B_{2}\right\} J_{3}}{\left(1-M^{2}\right) \gamma \gamma v_{1}} \tag{13.2.16}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{1}{M^{2}} \frac{d\left(M^{2}\right)}{d x_{1}}= & \frac{1}{\left(1-M^{2}\right)}\left\{\left[(\gamma-1)\left(1+\gamma M^{2}\right) E_{3}+\dot{\gamma}\left\{2+(\gamma-1) M^{2}\right\} v_{1} B_{2}\right] \frac{J_{3}}{\gamma p v_{1}}\right. \\
& -\frac{\left.\left[2+(\gamma-1) M^{2}\right] \frac{d A}{d x_{1}}\right\}}{A} \tag{13.2.31}
\end{align*}
$$

We assume that σ, γ, B_{o}, K and. M are constant along the channel. Then, from the corrected form of Eq. (13.2.31), we must have

PROBLEM 13.4 (continued)
$0=\frac{1}{1-M^{2}}\left\{\left[(\gamma-1)\left(1+\gamma M^{2}\right)(-K)+\gamma\left(2+(\gamma-1) M^{2}\right)\right] \frac{v B_{o}^{2} \sigma(1-K)}{\gamma p}-\frac{\left[2+(\gamma-1) M^{2}\right]}{A} \frac{d A}{d z}\right\}$
Now, using the relations

$$
v^{2}=M^{2} \gamma R T
$$

and $\quad p=\rho R T$
we write

$$
\frac{v}{\gamma p}=\frac{M^{2}}{\rho v}
$$

(b)

$$
\begin{align*}
& \text { Thus, we obtain } \\
& \qquad \frac{1}{A^{2}} \frac{d A}{d z}=\frac{\left[(\gamma-1)\left(1+M^{2}\right)(-K)+\gamma\left(2+(\gamma-1) M^{2}\right)\right] \frac{{ }_{o}^{2} \sigma(1-K) M^{2}}{\rho V A}}{2+(\gamma-1) M^{2}} \tag{c}
\end{align*}
$$

From conservation of mass,

$$
\begin{equation*}
\rho v A=\rho_{i} v_{i} A_{i} \tag{d}
\end{equation*}
$$

Using (d), we integrate (c) and solve for $\frac{A(z)}{A_{i}}$
to obtain
where

$$
\begin{equation*}
\frac{A(z)}{A_{i}}=\frac{1}{1-\beta_{1} z} \tag{e}
\end{equation*}
$$

$$
\beta_{1}=\frac{\left[(\gamma-1)\left(1+\gamma M^{2}\right)(-K)+\gamma\left(2+(\gamma-1) M^{2}\right)\right] \sigma B_{0}^{2} M^{2}(1-K)}{\rho_{i} v_{i}\left[2+(\gamma-1) M^{2}\right]}
$$

We now substitute into Eq. $(13.2 .27)$ to obtain
$\frac{1}{v} \frac{d v}{d z}=\frac{1}{\left(1-M^{2}\right)}[(\gamma-1)(-K)+\gamma] \frac{\mathrm{vB}_{0}^{2}(1-K) \sigma}{\gamma p}-\frac{1}{A} \frac{d A}{d z}$
Thus may be rewritten as
$\frac{1}{v} \frac{d v}{d z}=\frac{1}{\left(1-M^{2}\right)}\left[[(\gamma-1)(-K)+\gamma] \frac{\sigma B_{o}^{2}(1-K) M^{2}}{\rho_{i} v_{i} A_{i}}-\frac{\beta_{i}}{A_{i}}\right] A$
(g)

Solving, we obtain

$$
\begin{equation*}
\ln v=\frac{-\beta_{2}}{\beta_{1}} \ln \left(1-\beta_{1} z\right)+\ln v_{i} \tag{h}
\end{equation*}
$$

or

$$
\begin{align*}
& \frac{v(z)}{v_{i}}=\left(1-\beta_{1} z\right)^{-\beta_{2} / \beta_{1}} \tag{i}\\
& \text { where } \quad \beta_{2}=\frac{1}{\left(1-M^{2}\right)} \frac{[(\gamma-1)(-K)+\gamma] \sigma B_{0}^{2}(1-K) M^{2}-\beta_{1}}{\rho_{i} v_{i}}
\end{align*}
$$

Now the temperature is related through Eq. (13.2.12), as

PROBLEM 13.4 (continued)

$$
\begin{equation*}
\mathrm{m}^{2} \gamma \mathrm{RT}=\mathrm{v}^{2} \tag{j}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{T(z)}{T_{i}}=\left(\frac{v}{v_{i}}\right)^{2} \tag{k}
\end{equation*}
$$

From (d), we have

$$
\frac{\rho(z)}{\rho_{i}}=\frac{v_{i}}{v} \frac{A_{i}}{A}
$$

Thus, from Eq. (13.1.10)

$$
\begin{equation*}
\frac{p(z)}{p_{i}}=\frac{v_{i}}{v} \frac{A_{i}}{A} \frac{T}{T_{i}} \tag{m}
\end{equation*}
$$

Since the voltage across the electrodes is constant,

$$
\begin{equation*}
E=-\frac{V}{w(z)}=-K v(z) B_{0} \tag{n}
\end{equation*}
$$

or $\quad w(z)=\frac{K v_{i} B_{0} w_{i}}{K v(z) B_{0}}=\frac{v_{i}}{v(z)} w_{i}$
Thus, $\quad \frac{w(z)}{w_{i}}=\frac{v_{i}}{v(z)}$
Then

$$
\begin{equation*}
\frac{d(z)}{d_{i}}=\frac{A(z)}{A_{i}} \frac{{ }^{W}}{W(z)} \tag{p}
\end{equation*}
$$

Part b
We now assume that σ, γ, B_{o}, K and v are constant along the channel. Then, from Eq. (13.2.27) we have
$0=\frac{1}{\left(1-M^{2}\right)}\left\{[(\gamma-1)(-K)+\gamma] v_{i} B_{o}^{2} \frac{(1-K) \sigma}{\gamma p}-\frac{1}{A} \frac{d A}{d z}\right\}$
But, from Eq. (13.2.25) we know that

$$
\frac{p}{p_{i}}=1-\frac{(1-K) \sigma v_{i} B_{o}^{2} z}{p_{i}}=1-\beta_{3} z
$$

where $\beta_{3}=(1-K) \frac{\sigma v_{i} B_{o}^{2}}{p_{i}}$
Substituting the results of (b), into (a) and solving for $\frac{A(z)}{A_{i}}$, we obtain

$$
\begin{equation*}
\frac{A(z)}{A_{i}}=\left(\frac{p}{p_{i}}\right)^{-\beta_{4} / \beta_{3}} \tag{t}
\end{equation*}
$$

where $\beta_{4}=[(\gamma-1)(-K)+\gamma] \frac{v_{i} B_{o}^{2}}{\gamma p_{i}}(1-K) \sigma$
From conservation of mass,

$$
\begin{equation*}
\frac{\rho(z)}{\rho_{i}}=\frac{A_{i}}{A(z)} \tag{u}
\end{equation*}
$$

PROBLEM 13.4 (continued)

and so, from Eq. (13.1.10)

$$
\frac{T(z)}{T_{i}}=\frac{p(z)}{p_{i}} \frac{\rho_{i}}{\rho(z)}
$$

As in (p)

$$
\begin{equation*}
\frac{w(z)}{w_{i}}=\frac{v_{i}}{v(z)}=1 \tag{w}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{d(z)}{d_{i}}=\frac{\Lambda(z)}{A_{i}} \tag{x}
\end{equation*}
$$

Part c
We wish to find the length ℓ such that

$$
\begin{equation*}
\frac{C_{p} T(\ell)+\frac{1}{2}[v(\ell)]^{2}}{C_{p} T(0)+\frac{1}{2}[v(0)]^{2}}=.9 \tag{y}
\end{equation*}
$$

For the constant M generator of part (a), we obtain from (i) and (k)

$$
\frac{C_{p}\left[\frac{v(\ell)}{v_{i}}\right]^{2} T_{i}+\frac{1}{2}[v(\ell)]^{2}}{C_{p}\left[\frac{v}{v_{i}}\right]^{2} T_{i}+\frac{1}{2}[v(0)]^{2}}=\frac{C_{p}\left(1-\beta_{1} \ell\right)^{-2 \beta_{2} / \beta_{1}} T_{i}+\frac{1}{2}\left[v_{i}\left(1-\beta_{1} \ell\right)\right]^{-2 \beta_{2} / \beta_{1}}}{C_{p} T_{i}+\frac{1}{2} v_{i}^{2}}=.9
$$

Reducing, we obtain

$$
\begin{equation*}
\left(1-\beta_{1} \ell\right)^{-2 \beta_{2} / \beta_{1}}=.9 \tag{aa}
\end{equation*}
$$

Substituting the given numerical values, we have

$$
\beta_{1}=.396 \text { and } \beta_{2} / \beta_{1}=-7.3 \times 10^{-2}
$$

We then solve (aa) for ℓ, to obtain

$\ell \approx 1.3$ meters

For the constant v generator of part (b), we obtain from (s), (t), (u) and (v)

$$
\begin{equation*}
\frac{C_{p} T_{i}\left[\frac{p(\ell)}{p_{i}} \frac{\rho_{i}}{\rho(\ell)}\right]+\frac{1}{2} v_{i}^{2}}{C_{p} T_{i}+\frac{1}{2} v_{i}^{2}}=.9 \tag{bb}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{C_{p} T_{i}\left(1-\beta_{3} \ell\right)^{\left(1-\beta_{4} / \beta_{3}\right)}+\frac{1}{2} v_{i}^{2}}{C_{p} T_{i}+\frac{1}{2} v_{i}^{2}}=.9 \tag{cc}
\end{equation*}
$$

Substituting the given numerical values, we have

PROBLEM 13.4 (continued)

$$
\beta_{3}=.45 \text { and } \beta_{4} / \beta_{3}=.857
$$

Solving for ℓ, we obtain

$$
\ell \quad \approx 1.3 \text { meters. }
$$

PROBLEM 13.5
We are given the following relations:

$$
\begin{aligned}
& \frac{B(z)}{B_{i}}=\frac{E(z)}{E_{i}}=\frac{w_{i}}{w(z)}=\frac{d_{i}}{d(z)}=\left(\frac{A_{i}}{A(z)}\right)^{1 / 2}
\end{aligned}
$$

and that v, σ, γ, and K are constant.
Part a
From Eq. (13.2.33),

$$
J=(1-K) o v B
$$

(a)

For constant velocity, conservation of momentum yields

$$
\begin{equation*}
\frac{d p}{d z}=-(1-K) \sigma v B^{2} \tag{b}
\end{equation*}
$$

Conservation of energy yields

$$
\begin{equation*}
\rho v C_{p} \frac{d^{\prime} \Gamma}{d z}=-K(1-K) \sigma(v B)^{2} \tag{c}
\end{equation*}
$$

Using the equation of state,

$$
\begin{equation*}
\mathrm{p}=\rho R T \tag{d}
\end{equation*}
$$

we obtain
or

$$
\begin{equation*}
T \frac{d \rho}{d z}+\rho \frac{d T}{d z}=-\frac{(1-K)}{R} \sigma v B^{2} \tag{e}
\end{equation*}
$$

$$
\begin{equation*}
T \frac{\mathrm{~d} \rho}{\mathrm{~d} z}+\frac{(-K)(1-K) \sigma V B^{2}}{\mathrm{C}_{\mathrm{p}}}=-\frac{(1-K) \sigma v B^{2}}{R} \tag{f}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
T \frac{d \rho}{d z}=\sigma v B^{2}(1-K)\left(-\frac{1}{R}+\frac{K}{c_{p}}\right) \tag{g}
\end{equation*}
$$

Also

$$
B^{2}=\frac{B_{i}{ }^{2}\left(A_{i}\right)}{A(z)}
$$

and

$$
\rho_{i} A_{i}=\rho(z) A(z)
$$

Therefore $\quad T \frac{d \rho}{d z}=\frac{\sigma_{V B_{i}^{2}}(1-K)\left(-\frac{1}{R}+\frac{K}{C_{p}}\right)}{\rho_{i}} \rho(z)$

$$
\begin{equation*}
\rho c_{p} \frac{d T}{d z}=-K(1-K) \sigma v \frac{B_{i}^{2} \rho}{\rho_{i}} \tag{}
\end{equation*}
$$

PROBLEM 13.5 (continued)

and so

$$
\frac{d T}{d z}=-\frac{K(1-K) \sigma v B_{i}^{2}}{\rho_{i} c_{p}}
$$

Therefore

$$
\begin{equation*}
T=-K(1-K) \frac{\sigma_{v B_{i}}^{2}}{\rho_{i} c_{p}} z+T_{i} \tag{k}
\end{equation*}
$$

Let

$$
\alpha=\frac{-K(1-K) \sigma v B_{i}^{2}}{\rho_{i} c_{p}}
$$

Then

$$
\begin{align*}
& T=T_{i}\left(\frac{\alpha z}{T_{i}}+1\right) \tag{m}\\
& \frac{d \rho}{\rho}=\frac{+\sigma v B_{i}^{2}(1-K)\left(\frac{K}{C_{p}}-\frac{1}{R}\right)}{\rho_{i}\left(\alpha z+T_{i}\right)} d z \tag{n}
\end{align*}
$$

We let

$$
\begin{aligned}
\beta & =\frac{+\sigma v B_{i}^{2}(1-K)\left(\frac{K}{c_{p}}-\frac{1}{R}\right)}{\rho_{i}} \alpha \\
& =\frac{c_{p}}{K R}-1
\end{aligned}
$$

Integrating (n), we then obtain
or

$$
\ln \rho=\beta \ln \left(\alpha z+T_{i}\right)+\text { constant }
$$

$$
\begin{equation*}
\rho=\rho_{i}\left(\frac{\alpha z}{T_{i}}+1\right)^{\beta} \tag{o}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
A(z)=\frac{A_{i}}{\left(\frac{\alpha z}{T_{i}}+1\right)^{B}} \tag{p}
\end{equation*}
$$

Part b
From (m),

$$
\frac{T(\ell)}{T_{i}}=\frac{\alpha \ell+T_{i}}{T_{i}}=.8
$$

or

$$
\frac{\alpha \ell}{T_{i}}=-.2
$$

Now

$$
\frac{\alpha}{T_{i}}=-\frac{K(1-K) \sigma v_{i} B_{i}^{2}}{\rho_{i} c_{p} T_{i}}
$$

But

$$
c_{p} T_{i}=\frac{R T_{i}}{\left(1-\frac{1}{\gamma}\right)}=\frac{p_{i}}{\rho_{1}\left(1-\frac{1}{\gamma}\right)}=2.5 \times 10^{6}
$$

PROBLEM 13.5 (Continued)

Thus

$$
\frac{\alpha}{T_{i}}=\frac{-.5(.5) 50(700) 16}{.7\left(2.5 \times 10^{6}\right)}=-8.0 \times 10^{-2}
$$

Solving for ℓ, we obtain

$$
\ell=\frac{.2}{8} \times 10^{2}=1.25 \text { meters }
$$

Part c

$$
\rho=\rho_{i}\left(\frac{\alpha z}{T_{i}}+1\right)^{\beta}
$$

Numerically

$$
B=\frac{c_{p}}{K R}-1=\frac{1}{\left(1-\frac{1}{\gamma}\right) K}-1 \approx 6
$$

Thus

$$
\rho(z)=.7(1-.08 z)^{6}
$$

Then it follows:

$$
\begin{aligned}
& \mathrm{p}(z)=\rho R T=p_{i}(1-.08 z)^{7}=5 \times 10^{5}(1-.08 z)^{7} \\
& T(z)=T_{i}(1-.08 z)
\end{aligned}
$$

From the given information, we cannot solve for T_{i}, only for

$$
\begin{aligned}
\mathrm{RT}_{i}= & \frac{\mathrm{p}_{i}}{\rho_{i}}=\frac{v_{i}^{2}}{\gamma M_{i}^{2}} \approx 7 \times 10^{5} \\
M^{2}(z) & =\frac{v_{i}^{2}}{\gamma R T(z)}=\frac{v_{i}^{2}}{\gamma p(z)} \rho(z)=\frac{v_{i}^{2}}{\gamma} \frac{\rho_{i}\left(\frac{\alpha z}{T_{i}}+1\right)^{\beta}}{p_{i}\left(\frac{\alpha z}{T_{i}}+1\right)^{(\beta+1)}} \\
& =\frac{.5}{1-.08 z}
\end{aligned}
$$

Now

Part d
The total electric power drawn from this generator is

$$
\begin{aligned}
\mathrm{p}^{e} & =V I=-E(z) w(z) J(z) \ell d(z) \\
& =-E(z)(1-K) \sigma v B(z) \ell d(z) w(z) \\
& =-E_{i} w_{i}(1-K) \sigma v B_{i} d_{i} \ell
\end{aligned}
$$

But

$$
E_{i}=-K v B_{i}
$$

Thus

$$
\begin{aligned}
\mathrm{p}^{\mathrm{e}} & =\mathrm{K}\left(\mathrm{vB}_{i}\right)^{2} \mathrm{w}_{i} \mathrm{~d}_{\mathrm{i}} \sigma(1-\mathrm{K}) \ell \\
& =.5(700)^{2} 16(.5) 50(.5) 1.25 \\
& =61.3 \times 10^{6} \text { watts }=61.3 \text { megawatts }
\end{aligned}
$$

PROBLEM 13.6

Part a

We are given that

$$
\begin{equation*}
\bar{E}=\bar{i}_{x} \frac{4}{3} \frac{V_{o}}{L^{4 / 3}} x^{1 / 3} \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{e}=\frac{4}{9} \frac{\varepsilon_{0} V_{0}}{L^{4 / 3} x^{2 / 3}} \tag{b}
\end{equation*}
$$

The force equation in the steady state is

$$
\begin{equation*}
\rho_{m} v_{x} \frac{d v_{x}}{d x} \bar{I}_{x}=\rho_{e} \bar{E} \tag{c}
\end{equation*}
$$

Since $\rho e^{/ \rho_{m}}=q / m=$ constant, we can write

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{1}{2} v_{x}^{2}\right)=\frac{q}{m} \frac{4}{3} \frac{v_{0}}{L^{4 / 3}} x^{1 / 3} \tag{d}
\end{equation*}
$$

Solving for $\mathbf{v}_{\mathbf{x}}$ we obtain

$$
\begin{equation*}
v_{x}=\sqrt{\frac{2 q}{m} v_{o}}\left(\frac{x}{L}\right)^{2 / 3} \tag{e}
\end{equation*}
$$

Part b
The total force per unit volume acting on the accelerator system is

$$
\begin{equation*}
\bar{F}=\rho_{e} \bar{E} \tag{f}
\end{equation*}
$$

Thus, the total force which the fixed support must exert is

$$
\begin{aligned}
\bar{f}_{\text {total }} & =-\int F d V \bar{i}_{x} \\
& =-\int_{0}^{\ell} \frac{16}{27} \frac{\varepsilon_{0} V_{o}^{2}}{L^{8 / 3}} x^{-1 / 3} \text { Adx } \bar{i}_{x} \\
\overline{\mathbf{f}}_{\text {total }} & =-\frac{8}{9} \frac{\varepsilon_{0} V_{0}^{2}}{L^{2}} A \overline{\mathrm{i}}_{x}
\end{aligned}
$$

PROBLEM 13.7

Part a

We refer to the analysis performed in section 13.2.3a. The equation of motion for the velocity is, Eq. (13.2.76),

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial t^{2}}=a^{2} \frac{\partial^{2} v}{\partial x_{1}}{ }^{2} \tag{a}
\end{equation*}
$$

The boundary conditions are

$$
\begin{aligned}
& v(-L)=V_{0} \cos \omega t \\
& v(0)=0
\end{aligned}
$$

We write the solution in the form

PROBLEM 13.7 (continued)

$$
\begin{equation*}
v\left(x_{1} t\right)=\operatorname{Re}\left[A e^{j\left(\omega t-k x_{1}\right)}+B e^{j\left(\omega t+k x_{1}\right)}\right] \tag{b}
\end{equation*}
$$

where $k=\frac{\omega}{a}$

Using the boundary condition at $x_{1}=0$, we can alternately write the solution as
$v=\operatorname{Re}\left[A \sin k x_{1} e^{j \omega t}\right]$
Applying the other boundary condition at $x_{1}=-L$, we finally obtain

$$
\begin{equation*}
v\left(x_{1}, t\right)=-\frac{V_{0}}{\sin k L} \sin k x_{1} \cos \omega t . \tag{d}
\end{equation*}
$$

The perturbation pressure is related to the velocity through Eq. (13.2.74)

$$
\begin{equation*}
\rho_{0} \frac{\partial v^{\prime}}{\partial t}=-\frac{\partial p^{\prime}}{\partial x_{1}} \tag{e}
\end{equation*}
$$

Solving, we obtain

$$
\begin{equation*}
\frac{\rho_{\mathrm{o}} V_{o} \omega}{\operatorname{sinkL}} \sin k x_{1} \sin \omega t=-\frac{\partial \mathrm{p}^{\prime}}{\partial \mathrm{x}_{1}} \tag{f}
\end{equation*}
$$

or

$$
\begin{equation*}
p^{\prime}=\frac{\rho_{0} V_{0} \omega}{k \sin k L} \cos k x_{1} \sin \omega t \tag{g}
\end{equation*}
$$

where ρ_{0} is the equilibrium density, related to the speed of sound a, through Eq. (13.2.83).
Thus, the total pressure is
$p=p_{0}+p^{\prime}=p_{0}+\frac{\rho_{0} v_{0} \omega}{k \sin k L} \cos k x_{1} \sin \omega t$
and the perturbation pressure at $x_{1}=-L$ is
$p^{\prime}(-L, t)=\frac{\rho_{0} V_{0} a}{\sin k L} \cos k L \sin \omega t$
Part b
There will be resonances in the pressure if
$\sin k L=0$
or $\quad k L=n \pi \quad n=1,2,3 \ldots$
Thus

$$
\begin{equation*}
\omega=\frac{\mathrm{n} \pi}{\mathrm{~L}} \mathrm{a} \tag{l}
\end{equation*}
$$

PROBLEM 13.8

Part a

We carry through an analysis similar to that performed in section 13.2 .3 b . We assume that

$$
\begin{aligned}
& \bar{E}=\bar{i}_{2} E_{2}\left(x_{1}, t\right) \\
& \bar{J}=\bar{i}_{2} J_{2}\left(x_{1}, t\right)
\end{aligned}
$$

PROBLEM 13.8

$$
\bar{B}=\bar{i}_{3}\left[\mu_{0} H_{0}+\mu_{0} H_{3}^{\prime}\left(x_{1}, t\right)\right]
$$

Conservation of momentum yields

$$
\begin{equation*}
\frac{D v_{1}}{\rho D}=-\frac{\partial p}{\partial x_{1}}+J_{2} \mu_{0}\left(H_{0}+H_{3}^{\prime}\right) \tag{a}
\end{equation*}
$$

Conservation of energy gives us

$$
\begin{equation*}
\rho \frac{D}{D t}\left(u+\frac{1}{2} v_{1}^{2}\right)=-\frac{\partial}{\partial x_{1}}\left(p v_{1}\right)+J_{2} E \tag{b}
\end{equation*}
$$

We use Ampere's and Faraday's laws to obtain

$$
\begin{align*}
& \frac{\partial H_{3}^{\prime}}{\partial x_{1}}=-J_{2} \tag{c}\\
& \frac{\partial E_{2}}{\partial x_{1}}=-\frac{\mu_{0} \partial H_{3}^{\prime}}{\partial t} \tag{d}
\end{align*}
$$

while
Ohm's law yields

$$
\begin{equation*}
\underset{\rightarrow \infty}{\mathrm{J}_{2}}=\sigma\left[\mathrm{E}_{2}-\mathrm{v}_{1} \mathrm{~B}_{3}\right] \tag{e}
\end{equation*}
$$

Since $\sigma \rightarrow \infty$

$$
\begin{equation*}
E_{2}=v_{1} B_{3} \tag{f}
\end{equation*}
$$

We linearize, as in Eq. (13.2.91), so $E_{2} \approx v_{1} \mu_{0} H_{0}$
Substituting into Faraday's law

$$
\begin{equation*}
\mu_{0} H_{o} \frac{\partial v_{1}}{\partial x_{1}}=-\mu_{o} \frac{\partial H_{3}^{\prime}}{\partial t} \tag{g}
\end{equation*}
$$

Linearization of the conservation of mass yields

$$
\begin{equation*}
\frac{\partial \rho^{\prime}}{\partial t}=-\rho_{0} \frac{\partial v_{1}}{\partial x_{1}} \tag{h}
\end{equation*}
$$

Thus, from (g)

$$
\begin{equation*}
\frac{\mu_{0} H_{0}}{\rho_{0}} \frac{\partial \rho^{\prime}}{\partial t}=\mu_{0} \frac{\partial H^{\prime}}{\partial t} \tag{i}
\end{equation*}
$$

Then

$$
\frac{H_{0}}{H_{3}^{\prime}}=\frac{\rho_{0}}{\rho^{\prime}}
$$

Linearizing Eq. (13.2.71), we obtain

$$
\begin{equation*}
\frac{D p^{\prime}}{D t}=\frac{\gamma p_{o}}{\rho_{0}} \frac{D \rho^{\prime}}{D t} \tag{k}
\end{equation*}
$$

```
ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS
```


PROBLEM 13.8 (continued)

Defining the acoustic speed

$$
\begin{gathered}
a_{s}=\left(\frac{\gamma p_{0}}{\rho_{0}}\right)^{1 / 2} \text { where } p_{0} \text { is the equilibrium pressure, } \\
p_{0}=p_{1}-\frac{\mu_{0} H_{0}^{2}}{2}
\end{gathered}
$$

we have

$$
p^{\prime}=a_{s}^{2} \rho^{\prime}
$$

Linearization of convervation of momentum (a) yields

$$
\begin{equation*}
\rho_{0} \frac{\partial v_{1}}{\partial t}=-\frac{\partial p^{\prime}}{\partial x_{1}}-\frac{\partial H^{\prime}}{\partial x_{1}} \mu_{0} H_{0} \tag{m}
\end{equation*}
$$

or, from (j) and (ℓ),

$$
\begin{equation*}
\rho_{0} \frac{\partial v_{1}}{\partial t}=\frac{\partial \rho^{\prime}}{\partial x_{1}}\left(-a_{s}^{2}-\frac{\mu_{0} H_{o}^{2}}{\rho_{0}}\right) \tag{n}
\end{equation*}
$$

Differentiating (n) with respect to time, and using conservation of mass (h), we finally obtain

$$
\begin{equation*}
\frac{\partial^{2} v_{1}}{\partial t^{2}}=\left(a_{s}^{2}+\frac{\mu_{0} H_{o}^{2}}{\rho_{0}}\right) \frac{\partial^{2} v_{1}}{\partial x_{1}^{2}} \tag{o}
\end{equation*}
$$

Defining

$$
a^{2}=a_{s}^{2}+\frac{\mu_{o} H_{o}^{2}}{\rho_{o}}
$$

$$
\begin{equation*}
\frac{\partial^{2} v_{1}}{\partial t^{2}}=a^{2} \frac{\partial^{2} v_{1}}{\partial x_{1}^{2}} \tag{q}
\end{equation*}
$$

Part b
We assume solutions of the form

$$
\begin{equation*}
v_{1}=\operatorname{Re}\left[A_{1} e^{j\left(\omega t-k x_{1}\right)}+A_{2} e^{j\left(\omega t+k x_{1}\right)}\right] \tag{r}
\end{equation*}
$$

where $k=\frac{\omega}{a}$
The boundary condition at $x_{1}=-L$ is

$$
\begin{equation*}
V(-L, t)=V_{s} \cos \omega t=V_{s} R e e^{j \omega t} \tag{s}
\end{equation*}
$$

and at $x_{1}=0$

$$
\begin{equation*}
M \frac{d v_{1}}{d t}(0, t)=\left.p^{\prime} A\right|_{x_{1}=0}+\left.\mu_{0} H_{0} H_{3}^{\prime} A\right|_{x_{1}=0} \tag{t}
\end{equation*}
$$

From (h), (j) and (ℓ),

$$
\begin{equation*}
\frac{1}{a_{s}^{2}} \frac{\partial p^{\prime}}{\partial t}=-\rho_{0} \frac{\partial v_{1}}{\partial x_{1}} \tag{u}
\end{equation*}
$$

PROBLEM 13.8 (continued)

$$
\begin{equation*}
\frac{H_{3}^{\prime}}{H_{0}}=\frac{p^{\prime}}{a_{s}{ }^{2} \rho_{0}} \tag{v}
\end{equation*}
$$

Thus

$$
\begin{equation*}
M \frac{d v_{1}(0, t)}{d t}=A\left(\frac{\mu_{0} H_{0}^{2}}{a_{s}^{2} \rho_{0}}+1\right) p^{\prime}=A \frac{a^{2}}{a_{S}^{2}} p^{\prime} \tag{w}
\end{equation*}
$$

From (u), we solve for $\left.p^{\prime}\right|_{x_{1}=0}$ to obtain:

$$
\begin{equation*}
\left.p^{\prime}\right|_{x_{1}=0}=-\frac{\rho_{0}^{a_{s} a_{s}^{2} k}}{\omega}\left(A_{2}-A_{1}\right) e^{j \omega t} \tag{x}
\end{equation*}
$$

Substituting into (s) and (t), we have

$$
\operatorname{Mjw}\left(A_{1}+A_{2}\right)=A\left(\frac{a}{a_{s}}\right)^{2}\left(\frac{\rho_{0} a_{s}^{2} k}{w}\right)\left(A_{1}-A_{2}\right)
$$

and

$$
A_{1} e^{+j k \ell}+A_{2} e^{-j k \ell}=v_{s}
$$

Solving for A_{1} and A_{2}, we obtain

$$
\begin{align*}
A_{1} & =\frac{\left(M j w+A a \rho_{0}\right) V_{s}}{2\left(-M w \sin k \ell+A a \rho_{0} \cos k \ell\right)} \\
A_{2} & =\frac{\left(A a \rho_{0}-M j w\right) V_{s}}{2\left(-M w \sin k \ell+A a \rho_{0} \cos k \ell\right)} \tag{z}
\end{align*}
$$

Thus, the velocity of the piston is

$$
\begin{align*}
& v_{1}(0, t)=\operatorname{Re}\left[A_{1}+A_{2}\right] e^{j \omega t} \\
& v_{1}(0, t)=\frac{A a \rho_{0} v_{s}}{-M w \sin k \ell+A a \rho_{0} \cos k \ell} \cos \omega t \tag{aa}
\end{align*}
$$

PROBLEM 13.9
Part a
The differential equation for the velocity as derived in problem 13.8 is

$$
\begin{equation*}
\frac{\partial^{2} v_{1}}{\partial t^{2}}=a^{2} \frac{\partial^{2} v_{1}}{\partial x_{1}^{2}} \tag{a}
\end{equation*}
$$

where

$$
a^{2}=a_{s}^{2}+\frac{\mu_{0}^{1}{ }_{0}^{2}}{\rho_{0}}
$$

with

$$
a_{s}^{2}=\left(\frac{\gamma p_{0}}{\rho_{0}}\right)^{1 / 2} \text { where } p_{0}=p_{1}-\frac{\mu_{0} H_{0}^{2}}{2}
$$

Part b
We assume a solution of the form

PROBLEM 13.9 (continued)

$$
V\left(x_{1}, t\right)=\operatorname{Re}\left[D e^{j\left(\omega t-k x_{1}\right)}\right] \text { where } k=\frac{w}{a}
$$

We do not consider the negatively traveling wave, as we want to use this system as a delay line without distortion. The boundary condition at $x_{1}=-L$ is

$$
V(-L, t)=\operatorname{Re} V_{s} e^{j \omega t}
$$

and at $x_{1}=0$ is

$$
\begin{equation*}
\frac{d V^{2}(0, t)^{\prime}}{d t}=p^{\prime}(0, t) A-B V_{1}(0, t)+\mu_{0} H_{0} H_{3}^{\prime} A \tag{b}
\end{equation*}
$$

From problem 13.8, (h), (j) and (ℓ)

$$
p^{\prime}=a_{s}^{2} \rho^{\prime} \quad, \frac{\partial \rho^{\prime}}{\partial t}=-\rho_{0} \frac{\partial v_{1}}{\partial x_{1}} \text { and } \frac{H^{\prime}}{H_{0}}=\frac{p^{\prime}}{a_{s}^{2} 0_{0}}
$$

Thus, (b) becomes
where

$$
\begin{equation*}
-B D e^{j \omega t}+\left(\frac{a^{2}}{a_{s}}\right)^{2} p^{\prime} A=0 \tag{c}
\end{equation*}
$$

$$
\begin{equation*}
\left.p^{\prime}\right|_{x=0}=-\frac{\rho_{0} D(-j k)}{j \omega} a_{s}^{2} e^{j \omega t} \tag{d}
\end{equation*}
$$

Thus, for no reflections

$$
\begin{equation*}
-B+\left(\frac{a}{a_{s}}\right)^{2} \frac{A \rho_{0} a_{s}^{2}}{a}=0 \tag{e}
\end{equation*}
$$

or

$$
\begin{equation*}
B=A a \rho_{0} \tag{f}
\end{equation*}
$$

PROBLEM 13.10
The equilibrium boundary conditions are

$$
\begin{aligned}
& T\left[-\left(L_{1}+L_{2}+\Delta\right), t\right]=T_{0} \\
& T\left[-\left(L_{1}+\Delta\right), t\right] A_{s}=-p_{0} A_{c}
\end{aligned}
$$

Boundary conditions for incremental motions are

1) $T\left[-\left(L_{1}+L_{2}+\Delta\right), t\right]=T_{s}(t)$
$2)-T\left[-\left(L_{1}+\Delta\right), t\right] A_{s}-p\left(-L_{1}, t\right) A_{c}=M \frac{d}{d t} v_{\ell}\left(-L_{1}, t\right)$
2) $\quad v_{\ell}\left(-L_{1}, t\right)=v_{e}\left[-\left(L_{1}+\Delta\right), t\right]$ since the mass is rigid
and $\left._{4}\right) \quad v_{\ell}(0, t)=0$ since the wall at $x=0$ is fixed.
PROBLEM 13.11
Part a
We can immediately write down the equation for perturbation velocity, using equations (13.2.76) and (13.2.77) and the results of chapters 6 and 10 .

PROBLEM 13.11 (continued)

We replace $\partial / \partial t$ by $\partial / \partial t+v \cdot \nabla$ to obtain

$$
\begin{aligned}
& \quad\left(\frac{\partial}{\partial t}+v_{0} \frac{\partial}{\partial x}\right)^{2} v^{\prime}=a_{s}^{2} \frac{\partial^{2} v^{\prime}}{\partial x^{2}} \\
& \text { Letting } v^{\prime}=\operatorname{Re} \hat{v} e^{j(\omega t-k x)}
\end{aligned}
$$

we have

$$
\left(\omega-k V_{0}\right)^{2}=a_{s}^{2} k^{2}
$$

Solving for w, we obtain

$$
\omega=k\left(v_{0} \pm a_{s}\right)
$$

Part b
Solving for k, we have

$$
k=\frac{\omega}{V_{0} \pm a_{s}}
$$

For $V_{o}>a_{s}$, both waves propagate in the positive x - direction.
PROBLEM 13.12
Part a
We assume that

$$
\begin{aligned}
& \bar{E}=\bar{i}_{z} E_{z}(x, t) \\
& \bar{J}=\bar{i}_{z} J_{z}(x, t) \\
& \bar{B}=\bar{i}_{y} \mu_{0}\left[H_{0}+H_{y}^{\prime}(x, t)\right]
\end{aligned}
$$

We also assume that all quantities can be written in the form of Eq. (13.2.91) .

$$
\begin{equation*}
\rho_{0} \frac{\partial v_{x}}{\partial t}=-\frac{\partial p^{\prime}}{\partial x}-J_{z} \mu_{0} H_{0} \quad \text { (conservation of momentum } \quad \text { linearized) } \tag{a}
\end{equation*}
$$

The relevant electromagnetic equations are

$$
\begin{equation*}
\frac{\partial H_{y}^{\prime}}{\partial x}=J_{z} \tag{b}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial E_{z}}{\partial x}=\mu_{0} \frac{\partial H_{y}^{\prime}}{\partial t} \tag{c}
\end{equation*}
$$

and the constitutive law is

$$
\begin{equation*}
J_{z}=\sigma\left(E_{z}+v_{x} \mu_{0} H_{o}\right) \tag{d}
\end{equation*}
$$

We recognize that Eqs. (13.2.94), (13.2.96) and (13.2.97) are still valid, so

$$
\begin{equation*}
\frac{1}{\rho_{0}} \frac{\partial \rho^{\prime}}{\partial t}=-\frac{\partial v_{x}}{\partial x} \tag{e}
\end{equation*}
$$

PROBLEM 13.12 (continued)

and

$$
\begin{equation*}
p^{\prime}=a_{s}^{2} \rho^{\prime} \tag{f}
\end{equation*}
$$

Part b
We assume all perturbation quantities are of the form

$$
v_{x}=\operatorname{Re}\left[\hat{v} e^{j(\omega t-k x)}\right]
$$

Using (b), (a) may be rewritten as

$$
\begin{equation*}
\rho_{0} j \hat{w v}=+j k \hat{p}+\mu_{0} H_{0} j k \hat{H} \tag{g}
\end{equation*}
$$

and (c) may now be written as

$$
\begin{equation*}
-j k \hat{E}=\mu_{0} j \omega \hat{H} \tag{h}
\end{equation*}
$$

Then, from (b) and (d)

$$
\begin{equation*}
-j k \hat{H}=\sigma\left(\hat{E}+\hat{v} \mu_{0} H_{o}\right) \tag{i}
\end{equation*}
$$

Solving (g) and (h) for \hat{H} in terms of \hat{v}, we have

$$
\begin{equation*}
\hat{H}=\frac{\hat{v} \sigma \mu_{o} H_{o}}{\left(-j k+\sigma \mu_{o} \frac{\omega}{k}\right)} \tag{j}
\end{equation*}
$$

From (e) and (f), we solve for \hat{p} in terms of \hat{v} to be

$$
\begin{equation*}
\hat{p}=\frac{k}{\omega} \rho_{o} a_{s}^{2} \hat{v} \tag{k}
\end{equation*}
$$

Substituting (j) and (k) back into (g), we find

$$
\begin{equation*}
\hat{v}\left[\rho_{o} j \omega-\frac{j k^{2}}{\omega} \rho_{o} a_{s}^{2}-\frac{j k\left(\mu_{o} H_{o}\right)^{2} \sigma}{\left[-j k+\frac{\sigma \mu_{o} \omega}{k}\right]}\right]=0 \tag{}
\end{equation*}
$$

Thus, the dispersion relation is

$$
\begin{equation*}
\left(\omega^{2}-k^{2} a_{s}^{2}\right)-\frac{j\left(\mu_{o} H_{o}\right)^{2} \omega k^{2}}{\left(+\frac{k^{2}}{\sigma}+j \mu_{o} \omega\right) \rho_{o}}=0 \tag{m}
\end{equation*}
$$

We see that in the 1 imit as $\sigma \rightarrow \infty$, this dispersion relation reduces to the lossless dispersion relation

$$
\begin{equation*}
\omega^{2}-k^{2}\left(a_{s}^{2}+\frac{\mu_{0} H_{o}^{2}}{\rho_{0}}\right)=0 \tag{n}
\end{equation*}
$$

Part c
If σ is very small, we can approximate (m) as

$$
\begin{equation*}
\omega^{2}-k^{2} a_{s}^{2}-j\left(\mu_{0} H_{0}\right)^{2} \frac{\omega \sigma}{\rho_{0}}\left(1-\frac{j \omega \mu_{0}^{\sigma}}{k^{2}}\right)=0 \tag{o}
\end{equation*}
$$

for which we can rewrite (o) as

PROBLEM 13.12 (continued)

$$
k^{4} a_{s}^{2}-k^{2}\left[\omega^{2}-j \omega \sigma \frac{\left(\mu_{0} H_{0}\right)^{2}}{\rho_{0}}\right]+\left(\frac{\mu_{0} H_{0}}{\rho_{0}}\right)^{2} \omega^{2} \sigma^{2} \mu_{0}=0
$$

(p)

Solving for k^{2}, we obtain

$$
\left.k^{2}=\frac{\omega^{2}-j \omega \sigma \frac{\left(\mu_{0} H_{o}\right)^{2}}{\rho_{0}}}{2 a_{s}^{2}} \pm \sqrt{\left[\frac{\omega^{2}-j \omega \sigma \frac{\left(\mu_{0} H_{0}\right)^{2}}{\rho_{0}}}{2 a_{s}{ }^{2}}\right.}\right]^{2}\left(\frac{\mu_{0} \omega^{2} \sigma^{2}}{\rho_{0}}\right)\left(\mu_{0} H_{o}\right)^{2} a_{s}{ }^{2}{ }^{2}
$$

q)

Since σ is very small, we expand the radical in (q) to obtain

$$
\begin{equation*}
k^{2}=\frac{\left[\omega^{2}-j \omega \sigma \frac{\left(\mu_{0} H_{0}\right)^{2}}{\rho_{0}}\right]}{2 a_{s}{ }^{2}} \pm\left[\frac{\omega^{2}-\frac{j \omega \sigma}{\rho_{0}}\left(\mu_{0} H_{0}\right)^{2}}{2 a_{s}^{2}}-\frac{\left(\frac{\mu_{0} \omega^{2} \sigma^{2}}{\rho_{0}}\right)\left(\mu_{0} H_{0}\right)^{2}}{\left[\omega^{2}-\frac{j \omega \sigma}{\rho_{0}}\left(\mu_{0} H_{0}\right)^{2}\right]}\right] \tag{r}
\end{equation*}
$$

Thus, our approximate solutions for k^{2} are

$$
\begin{equation*}
k^{2} \approx \frac{\left[\omega^{2}-j \omega \sigma \frac{\left(\mu_{0} H_{o}\right)^{2}}{\rho_{0}}\right]}{a_{s}^{2}} \tag{s}
\end{equation*}
$$

and

$$
\begin{equation*}
k^{2} \approx \frac{\left(\frac{\mu_{0} \omega^{2} \sigma^{2}}{\rho_{0}}\right)\left(\mu_{0} H_{0}\right)^{2}}{\left[\omega^{2}-\frac{j \omega \sigma}{\rho_{0}}\left(\mu_{0} H_{0}\right)^{2}\right]} \approx\left(\frac{\mu_{0} \sigma^{2}}{\rho_{0}}\right)\left(\mu_{0} H_{0}\right)^{2} \tag{t}
\end{equation*}
$$

The wavenumbers for the first pair of waves are approximately:

$$
\begin{equation*}
k \approx \pm\left(\frac{\omega-j \frac{\sigma}{2 p_{o}}\left(\mu_{o} H_{o}\right)^{2}}{a_{s}}\right) \tag{u}
\end{equation*}
$$

while for the second pair, we obtain

$$
\begin{equation*}
k \approx \pm \sigma\left(\mu_{0} H_{o}\right) \sqrt{\frac{\mu_{0}}{\rho_{0}}} \tag{v}
\end{equation*}
$$

The wavenumbers from (u) represent a forward and backward traveling wave, both with amplitudes exponentially decreasing. Such waves are called 'diffusion waves'. The wavenumbers from (v) represent pure propagating waves in the forward and reverse directions.

ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.12 (continued)
Part d
If σ is very large, then (m) reduces to

$$
\begin{equation*}
\omega^{2}-k^{2} a^{2}-j \frac{H_{0}^{2}}{\rho_{0}} \frac{k^{4}}{\sigma \omega}=0 ; a^{2}=a_{s}^{2}+\frac{\mu_{0} H_{o}^{2}}{\rho_{0}} \tag{w}
\end{equation*}
$$

This can be put in the form

$$
\begin{equation*}
k^{2}=\frac{\omega^{2}}{a^{2}}-j \frac{f(\omega, k)}{\sigma} \tag{x}
\end{equation*}
$$

where

$$
f(\omega, k)=\frac{H_{0}^{2} k^{4}}{\rho_{0} \omega a^{2}}
$$

As σ becomes very large, the second term in (x) becomes negligible, and so

$$
\begin{equation*}
k^{2} \approx \frac{\omega^{2}}{a^{2}} \tag{y}
\end{equation*}
$$

However, it is this second term which represents the damping in space; that is,

$$
k \approx \pm\left[\frac{\omega}{a}-j \frac{f(\omega, k)}{2 \sigma \omega} a\right]
$$

Thus, the approximate decay rate, k_{1}, is

$$
\begin{equation*}
k_{i} \approx \frac{f(\omega, k) a}{2 \sigma \omega}=\frac{H_{0}^{2} k^{4}}{2 \rho_{0} \omega a^{2}} \frac{a}{\omega} \tag{aa}
\end{equation*}
$$

or

$$
k_{i} \approx \frac{H_{o}^{2}}{2 \rho_{0} a \sigma} \frac{k^{4}}{\omega^{2}}=\frac{H_{o}^{2}}{2 \rho_{0} a^{5} \sigma} \omega^{2}
$$

