MIT OpenCourseWare http://ocw.mit.edu

Solutions Manual for Electromechanical Dynamics

For any use or distribution of this solutions manual, please cite as follows:

Woodson, Herbert H., James R. Melcher, and Markus Zahn. *Solutions Manual for Electromechanical Dynamics*. vol. 3. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-NonCommercial-Share Alike

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

PROBLEM 13.1

In static equilibrium, we have

$$-\nabla p - \rho g \overline{1}_{1} = 0 \tag{a}$$

Since $p = \rho RT$, (a) may be rewritten as

$$RT \frac{d\rho}{dx_1} + \rho g = 0$$
 (b)

Solving, we obtain

$$\rho = \rho_0 e^{-\frac{g}{RT}x_1}$$
 (c)

PROBLEM 13.2

Since the pressure is a constant, Eq. (13.2.25) reduces to

$$\rho v \frac{dv}{dz} = -J_y B \tag{a}$$

where we use the coordinate system defined in Fig. 13P.4. Now, from Eq. (13.2.21) we obtain

$$J_{y} = \sigma(E_{y} + vB)$$
 (b)

If the loading factor K, defined by Eq. (13.2.32) is constant, then

$$-KvB = +E$$
 (c)

Thus,
$$J_y = \sigma v B(1-K)$$
 (d)

Then
$$\rho v \frac{dv}{dz} = -\sigma v B^2 (1-K)$$
 (e)

or

$$\rho \frac{dv}{dz} = -\sigma B^{2} (1-K) = -\sigma (1-K) \frac{B_{i}^{2} A_{i}}{A(z)}$$
(f)

From conservation of mass, Eq. (13.2.24), we have

$$\rho_i \mathbf{v}_i \mathbf{A}_i = \rho \mathbf{A}(\mathbf{z}) \mathbf{v} \tag{g}$$

Thus

$$\frac{\rho_{\mathbf{i}}\mathbf{v}_{\mathbf{i}}\mathbf{A}_{\mathbf{i}}}{\mathbf{v}} \quad \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{z}} = -\sigma(\mathbf{1}-\mathbf{K})\mathbf{B}_{\mathbf{i}}^{2}\mathbf{A}_{\mathbf{i}}$$
(h)

Integrating, we obtain

$$\ln v = \frac{-\sigma(1-K)B_{1}^{2}}{\rho_{1}v_{1}}z + C$$
(1)
$$-\frac{z}{2}$$

or

$$\mathbf{v} = \mathbf{v}_{i} \mathbf{e}_{d} \tag{j}$$

where $l_d = \frac{\rho_i v_i}{\sigma(1-K)B_i^2}$ and we evaluate the arbitrary constant by realizing that 4

 $v = v_i$ at z = 0.

.

PROBLEM 13.3

Part a

We assume T, $B_{_{O}},$ w, $\sigma,$ $c_{_{p}}$ and $c_{_{V}}$ are constant. Since the electrodes are shortcircuited, E = 0, and so

$$J_{y} = v B_{o}.$$
 (a)

We use the coordinate system defined in Fig. 13P.4. Applying conservation of energy, Eq. (13.2.26), we have

$$\rho v \frac{d}{dz} \left(\frac{1}{2} v^2\right) = 0$$
, where we have set $h = constant$. (b)

Thus, v is a constant, $v = v_i$. Conservation of momentum, Eq. (13.2.25), implies

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}\mathbf{z}} = -\mathbf{v}_{\mathbf{i}} \mathbf{B}_{\mathbf{o}}^2 \tag{c}$$

Thus,
$$p = -v_{i}B_{0}^{2}z + p_{i}$$
 (d)

The mechanical equation of state, Eq. (13.1.10) then implies

$$\rho = \frac{n}{RT} = -\frac{v_{i}B^{2}z + p_{i}}{RT} = \rho_{i} - \frac{v_{i}B^{2}z}{RT}$$
(e)

From conservation of mass, we then obtain

$$\rho_{i} \mathbf{v}_{i} \mathbf{w}_{i}^{d} = \left(-\frac{\mathbf{v}_{i} \mathbf{B}_{o}^{2} \mathbf{z}}{\mathbf{RT}} + \rho_{i} \right) \mathbf{v}_{i} \mathbf{w}_{i}(\mathbf{z})$$
(f)

Thus

$$d(z) = \frac{\rho_{i}d_{i}}{\left(\rho_{i} - \frac{v_{i}B_{o}^{2}z}{RT}\right)}$$
(g)

Part b Then

$$\rho(z) = \rho_{i} - \frac{v_{i}B_{o}^{2} z}{RT}$$
(h)

PROBLEM 13.4

Note:

There are errors in Eqs. (13.2.16) and (13.2.31). They should read:

$$\frac{1}{M^2} \frac{d(M^2)}{dx_1} = \frac{\{(\gamma-1)(1+\gamma M^2)E_3 + \gamma[2+(\gamma-1)M^2]v_1B_2\}J_3}{(1-M^2)\gamma pv_1}$$
(13.2.16)

and

$$\frac{1}{M^{2}} \frac{d(M^{2})}{dx_{1}} = \frac{1}{(1-M^{2})} \left\{ \left[(\gamma-1) (1+\gamma M^{2}) E_{3} + \gamma \left\{ 2 + (\gamma-1) M^{2} \right\} v_{1} B_{2} \right] \frac{J_{3}}{\gamma p v_{1}} - \frac{\left[2 + (\gamma-1) M^{2} \right] dA}{A} dx_{1} \right\}$$
(13.2.31)
Part a

We assume that σ , γ , B_{σ} , K and M are constant along the channel. Then, from the corrected form of Eq. (13.2.31), we must have

.

PROBLEM 13.4 (continued)

$$0 = \frac{1}{1-M^2} \left\{ \left[(\gamma-1)(1+\gamma M^2)(-K) + \gamma(2+(\gamma-1)M^2) \right] \frac{v B_o^2 \sigma(1-K)}{\gamma p} - \frac{[2+(\gamma-1)M^2]}{A} \frac{dA}{dz} \right\}$$
(a)

Now, using the relations

$$v^2 = M^2 \gamma RT$$

and $p = \rho RT$

we write

$$\frac{\mathbf{v}}{\mathbf{v}\mathbf{p}} = \frac{\mathbf{M}^2}{\mathbf{\rho}\mathbf{v}}$$
(b)

Thus, we obtain

$$\frac{1}{A^2} \frac{dA}{dz} = \frac{\left[(\gamma - 1)(1 + \gamma M^2)(-K) + \gamma(2 + (\gamma - 1)M^2)\right]}{2 + (\gamma - 1)M^2} \frac{B_0^2 \sigma(1 - K)M^2}{\rho VA}$$
(c)

From conservation of mass,

$$\rho \mathbf{v} \mathbf{A} = \rho_{\mathbf{i}} \mathbf{v}_{\mathbf{i}} \mathbf{A}_{\mathbf{i}} \tag{d}$$

Using (d), we integrate (c) and solve for $\frac{A(z)}{A_1}$

to obtain

$$\frac{A(z)}{A_{i}} = \frac{1}{1 - \beta_{i} z}$$
(e)

where

$$\beta_{1} = \frac{[(\gamma-1)(1+\gamma M^{2})(-K) + \gamma(2+(\gamma-1)M^{2})]\sigma B_{0}^{2}M^{2}(1-K)}{\rho_{1}v_{1}[2+(\gamma-1)M^{2}]}$$

We now substitute into Eq. (13.2.27) to obtain

$$\frac{1}{v}\frac{dv}{dz} = \frac{1}{(1-M^2)} [(\gamma-1)(-K) + \gamma] \frac{vB_0^2(1-K)\sigma}{\gamma p} - \frac{1}{A}\frac{dA}{dz}$$
(f)

Thus may be rewritten as

$$\frac{1}{v}\frac{dv}{dz} = \frac{1}{(1-M^2)} \left[[(\gamma-1)(-K) + \gamma] \frac{\sigma B_0^2(1-K)M^2}{\rho_i v_i A_i} - \frac{\beta_1}{A_i} \right] A \qquad (g)$$

Solving, we obtain

$$\ln v = -\frac{\beta_2}{\beta_1} \quad \ln(1 - \beta_1 z) + \ln v_1 \tag{h}$$

or

$$\frac{v(z)}{v_{1}} = (1 - \beta_{1} z)^{-\beta_{2}/\beta_{1}}$$
(i)

.

where
$$\beta_2 = \frac{1}{(1-M^2)}$$
 $\frac{[(\gamma-1)(-K) + \gamma]\sigma B_0^2 (1-K)M^2 - \beta_1}{\rho_1 v_1}$

Now the temperature is related through Eq. (13.2.12), as

ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.4 (continued)

$$M^2 \gamma RT = v^2$$
 (j)

Thus

$$\frac{T(z)}{T_{i}} = \left(\frac{v}{v_{i}}\right)^{2}$$
(k)

From (d), we have

$$\frac{\rho(z)}{\rho_i} = \frac{v_i}{v} \frac{A_i}{A}$$
(1)

Thus, from Eq. (13.1.10)

$$\frac{\mathbf{p}(\mathbf{z})}{\mathbf{p}_{\mathbf{i}}} = \frac{\mathbf{v}_{\mathbf{i}}}{\mathbf{v}} \frac{\mathbf{A}_{\mathbf{i}}}{\mathbf{A}} \frac{\mathbf{T}}{\mathbf{T}_{\mathbf{i}}}$$
(m)

Since the voltage across the electrodes is constant,

$$E = -\frac{V}{w(z)} = -Kv(z)B_{0}$$
(n)

$$w(z) = \frac{Kv_i B_0^{W_i}}{Kv(z)B_0} = \frac{v_i}{v(z)} w_i$$
(0)

Thu

or

$$\frac{w(z)}{w_1} = \frac{v_1}{v(z)}$$
(p)

Then

$$\frac{d(z)}{d_{i}} = \frac{A(z)}{A_{i}} \frac{w_{i}}{w(z)}$$
(q)

Part b

We now assume that σ , γ , B_{o} , K and v are constant along the channel. Then, from Eq. (13.2.27) we have

$$0 = \frac{1}{(1-M^2)} \left\{ [(\gamma-1)(-K) + \gamma] v_1 B_0^2 - \frac{(1-K)\sigma}{\gamma p} - \frac{1}{A} \frac{dA}{dz} \right\}$$
(r)

But, from Eq. (13.2.25) we know that

$$\frac{p}{p_{i}} = 1 - \frac{(1-K)\sigma v_{i} B_{o}^{2} z}{p_{i}} = 1 - \beta_{3} z$$
(s)

where $\beta_3 = (1-K) \frac{\sigma_1 \sigma_0}{p_1}$

Substituting the results of (b), into (a) and solving for $\frac{A(z)}{A_{i}}$, we obtain

$$\frac{A(z)}{A_{i}} = \left(\frac{p}{p_{i}}\right)^{-\beta_{4}/\beta_{3}}$$
(t)

where $\beta_{4} = [(\gamma-1)(-K) + \gamma] \frac{10}{\gamma p_{1}} (1-K)\sigma$

From conservation of mass,

$$\frac{\rho(z)}{\rho_i} = \frac{A_i}{A(z)}$$
(u)

$$\frac{T(z)}{T_{i}} = \frac{p(z)}{p_{i}} \frac{\rho_{i}}{\rho(z)} , \qquad (v)$$

As in (p)

$$\frac{w(z)}{w_i} = \frac{v_i}{v(z)} = 1 \tag{(w)}$$

Thus

$$\frac{d(z)}{d_1} = \frac{A(z)}{A_1}$$
(x)

 $\frac{Part \ c}{We} \text{ wish to find the length } \ell \text{ such that}$

$$\frac{C_{p}T(l) + \frac{1}{2} [v(l)]^{2}}{C_{p}T(o) + \frac{1}{2} [v(o)]^{2}} = .9$$
 (y)

For the constant M generator of part (a), we obtain from (i) and (k)

$$\frac{C_{p}\left[\frac{v(\ell)}{v_{i}}\right]^{2} T_{i} + \frac{1}{2}[v(\ell)]^{2}}{C_{p}\left[\frac{v(0)}{v_{i}}\right]^{2} T_{i} + \frac{1}{2}[v(0)]^{2}} = \frac{C_{p}(1 - \beta_{1}\ell)}{C_{p}T_{i} + \frac{1}{2}v_{i}^{2}} = \frac{C_{p}(1 - \beta_{1}\ell)}{C_{p}T_{i} + \frac{1}{2}v_{i}^{2}} = .9$$
(z)

Reducing, we obtain

$$(1 - \beta_1 l)^{-2\beta_2/\beta_1} = .9$$
 (aa)

2

Substituting the given numerical values, we have

$$\beta_1 = .396$$
 and $\beta_2/\beta_1 = -7.3 \times 10^{-2}$

We then solve (aa) for l, to obtain

ℓ २1.3 meters

For the constant v generator of part (b), we obtain from (s), (t), (u) and (v)

$$\frac{C_{p}T_{i}\left[\frac{p(\ell)}{p_{i}},\frac{\rho_{i}}{\rho(\ell)}\right] + \frac{1}{2}v_{i}^{2}}{C_{p}T_{i} + \frac{1}{2}v_{i}^{2}} = .9$$
 (bb)

or

$$\frac{C_{p}T_{i}}{C_{p}T_{i}} \frac{(1 - \beta_{4}/\beta_{3})}{(1 - \beta_{3}\ell)} + \frac{1}{2}v_{1}^{2}}{C_{p}T_{i} + \frac{1}{2}v_{1}^{2}} = .9$$
 (cc)

Substituting the given numerical values, we have

.

83

PROBLEM 13.4 (continued)

PROBLEM 13.4 (continued)

 $\beta_3 = .45$ and $\beta_4/\beta_3 = .857$

Solving for *l*, we obtain

 $l \quad \sqrt[\gamma]{1.3}$ meters.

PROBLEM 13.5

We are given the following relations: $\frac{B(z)}{d_{1}} = \frac{E(z)}{d_{1}} = \frac{w_{1}}{d_{1}} = \frac{d_{1}}{d_{1}} = \frac{d_{1}}{d_{1}} = \frac{d_{1}}{d_{1}}$

$$\frac{B(z)}{B_{i}} = \frac{E(z)}{E_{i}} = \frac{-1}{w(z)} = \frac{-1}{d(z)} = \left(\frac{-1}{A(z)}\right)^{2}$$

and that v, σ , γ , and K are constant.

$$J = (1-K) \sigma V B$$
 (a)

For constant velocity, conservation of momentum yields

$$\frac{dp}{dz} = - (1-K)\sigma vB^2$$
 (b)

Conservation of energy yields

$$\rho v C \frac{dT}{p dz} = - K (1-K) \sigma (vB)^2$$
 (c)

Using the equation of state,

$$p = \rho RT$$
 (d)

we obtain

$$T \frac{d\rho}{dz} + \rho \frac{dT}{dz} = -\frac{(1-K)}{R} \sigma v B^2$$
 (e)

or

$$T \frac{d\rho}{dz} + \frac{(-K)(1-K)\sigma v B^{2}}{C_{p}} = -\frac{(1-K)\sigma v B^{2}}{R}$$
(f)

Thus,

$$T \frac{d\rho}{dz} = \sigma v B^2 (1-K) \left(-\frac{1}{R} + \frac{K}{c_p} \right)$$
(g)

Also

$$B^{2} = \frac{B_{i}^{2}(A_{i})}{A(z)}$$

and

and
$$\rho_{i}A_{i} = \rho(z)A(z)$$

Therefore $T \frac{d\rho}{dz} = \frac{\sigma_{v}B_{i}^{2}(1-K)(-\frac{1}{R}+\frac{K}{C})}{\rho_{i}}\rho(z)$ (h)
and $A_{T} = \frac{B_{i}^{2}\rho}{\rho_{i}}$

$$\rho c_{p} \frac{dT}{dz} = -K(1-K)\sigma v \frac{B_{i}^{2}\rho}{\rho_{i}}$$
(i)

PROBLEM 13.5 (continued)

and so

$$\frac{dT}{dz} = -\frac{K(1-K)\sigma v B_{i}^{2}}{\rho_{i} c_{p}}$$
(j)

Therefore

$$\Gamma = -K(1-K) \frac{\sigma_{vB_i}}{\rho_i c_p}^2 z + T_i$$
 (k)

Let

$$\alpha = \frac{-K(1-K)\sigma v B_{i}^{2}}{\rho_{i} c_{p}}$$
(l)

Then

$$T = T_{i} \left(\frac{\alpha z}{T_{i}} + 1 \right)$$
(m)

$$\frac{d\rho}{\rho} = \frac{+\sigma v B_i^2 (1-K) \left(\frac{K}{c_p} - \frac{1}{R}\right)}{\rho_i (\alpha z + T_i)} dz \qquad (n)$$

We let

$$\beta = \frac{+ \sigma v B_i^2 (1-K) \left(\frac{K}{c_p} - \frac{1}{R}\right)}{\rho_i \alpha}$$
$$= \frac{c_p}{KR} - 1$$

Integrating (n), we then obtain

 $ln \rho = \beta ln(\alpha z + T_{i}) + constant$ $\rho = \rho_{i} \left(\frac{\alpha z}{T_{i}} + 1\right)^{\beta} \qquad (o)$

(p)

Therefore

or

 $A(z) = \frac{A_{i}}{\left(\frac{\alpha z}{T_{i}} + 1\right)^{\beta}}$

Part b

From (m),

$$\frac{T(l)}{T_{i}} = \frac{\alpha l + T_{i}}{T_{i}} = .8$$

or

Now

$$\frac{\alpha}{T_{i}} = -\frac{K(1-K)\sigma v_{i}B_{i}^{2}}{\rho_{i}c_{p}T_{i}}$$

 $\frac{\alpha \ell}{T_i} = -.2$

But

• •

$$c_{p}T_{i} = \frac{R T_{i}}{(1-\frac{1}{\gamma})} = \frac{P_{i}}{\rho_{i}(1-\frac{1}{\gamma})} = 2.5 \times 10^{6}$$

PROBLEM 13.5 (Continued)

Thus

$$\frac{\alpha}{T_{i}} = \frac{-.5(.5)50(700)16}{.7(2.5 \times 10^{6})} = -8.0 \times 10^{-2}$$

Solving for ℓ , we obtain

$$l = \frac{.2}{8} \times 10^2 = 1.25$$
 meters

Part c

$$\rho = \rho_{i} \left(\frac{\alpha z}{T_{i}} + 1\right)^{\beta}$$

Numerically

$$\beta = \frac{c_{p}}{KR} - 1 = \frac{1}{(1\frac{1}{\gamma})K} - 1 ~~\% ~~6.$$

Thus

۰.

.

.

$$\rho(z) = .7(1 - .08z)^{6}$$

Then it follows:

$$p(z) = \rho RT = p_1(1 - .08z)^7 = 5 \times 10^5 (1 - .08z)^7$$

T(z) = T_1(1 - .08z)

From the given information, we cannot solve for T_i , only for

$$RT_{i} = \frac{p_{i}}{\rho_{i}} = \frac{v_{i}^{2}}{\gamma M_{i}^{2}} \approx 7 \times 10^{5}$$

$$M^{2}(z) = \frac{v_{i}^{2}}{\gamma RT(z)} = \frac{v_{i}^{2}}{\gamma p(z)} \rho(z) = \frac{v_{i}^{2}}{\gamma} \frac{\rho_{i} \left(\frac{\alpha z}{T_{i}} + 1\right)^{\beta}}{p_{i} \left(\frac{\alpha z}{T_{i}} + 1\right)^{(\beta+1)}}$$

$$= \frac{.5}{1 - .08z}$$

Part d

Now

The total electric power drawn from this generator is

$$p^{e} = VI = -E(z)w(z)J(z)ld(z)$$
$$= -E(z)(1-K)\sigma vB(z)ld(z)w(z)$$
$$= -E_{i}w_{i}(1-K)\sigma vB_{i}d_{i}l$$

But

Thus

$$E_{i} = -KvB_{i}$$

$$p^{e} = K(vB_{i})^{2} w_{i}d_{i}\sigma(1-K)\ell$$

$$= .5(700)^{2}16(.5)50(.5)1.25$$

$$= 61.3 \times 10^{6} watts = 61.3 megawatts$$

. .

87

:

PROBLEM 13.6

Part a

We are given that

$$\overline{E} = \overline{i}_{x} \frac{4}{3} \frac{V_{0}}{L^{\frac{1}{3}}} x^{\frac{1}{3}}$$
(a)

and

$$\rho_{e} = \frac{4}{9} \frac{\varepsilon_{o} V_{o}}{L^{\frac{1}{3}} x^{\frac{2}{3}}}$$
(b)

The force equation in the steady state is

$$\rho_{\rm m} v_{\rm x} \frac{dv_{\rm x}}{dx} \overline{i}_{\rm x} = \rho_{\rm e} \overline{E}$$
 (c)

Since $\rho_e / \rho_m = q/m = constant$, we can write

$$\frac{d}{dx}\left(\frac{1}{2} v_{x}^{2}\right) = \frac{q}{m} \frac{4}{3} \frac{V_{o}}{L^{\frac{1}{3}}} x^{\frac{1}{3}}$$
(d)

Solving for v we obtain x

$$v_{x} = \sqrt{\frac{2q}{m}} v_{o} \left(\frac{x}{L}\right)^{2}$$
(e)

(f)

. .

Part_b

The total force per unit volume acting on the accelerator system is $\overline{F} = \rho_{p}\overline{E}$

Thus, the total force which the fixed support must exert is

$$\overline{f}_{total} = -\int F dV \overline{i}_{x}$$

$$= -\int \frac{16}{27} \frac{\varepsilon_{0} V_{0}^{2}}{L^{8/3}} x^{-1/3} A dx \overline{i}_{x}$$

$$0$$

$$\overline{f}_{total} = -\frac{8}{9} \frac{\varepsilon_{0} V_{0}^{2}}{L^{2}} A \overline{i}_{x}$$

PROBLEM 13.7

Part a

We refer to the analysis performed in section 13.2.3a. The equation of motion for the velocity is, Eq. (13.2.76),

$$\frac{\partial^2 \mathbf{v}}{\partial t^2} = a^2 \frac{\partial^2 \mathbf{v}}{\partial x_1^2}$$
(a)

The boundary conditions are

 $v(-L) = V_0 \cos \omega t$ v(0) = 0

We write the solution in the form

¢

PROBLEM 13.7 (continued)

$$v(x_{1}t) = Re[A e^{j(\omega t - kx_{1})} + B e^{j(\omega t + kx_{1})}]$$
(b)
$$k = \frac{\omega}{a}$$

where

Using the boundary condition at $x_1 = 0$, we can alternately write the solution as

$$v = Re[A sin kx_{l}e^{j\omega t}]$$

Applying the other boundary condition at $x_1 = -L$, we finally obtain

$$v(x_{1},t) = -\frac{V_{0}}{\sin kL} \sin kx_{1} \cos \omega t.$$
 (d)

The perturbation pressure is related to the velocity through Eq. (13.2.74)

$$\rho_{o} \frac{\partial v'}{\partial t} = -\frac{\partial p'}{\partial x_{1}}$$
(e)

Solving, we obtain

$$\frac{\rho_{o}V_{o}\omega}{\text{sinkL}}\sin kx_{1}\sin \omega t = -\frac{\partial p'}{\partial x_{1}}$$
(f)

or

$$p' = \frac{\rho_0 V \omega}{k \sin kL} \cos kx_1 \sin \omega t$$
 (g)

where ρ_0 is the equilibrium density, related to the speed of sound a, through Eq. (13.2.83).

Thus, the total pressure is

$$p = p_0 + p' = p_0 + \frac{\rho_0 V \omega}{k \sin kL} \cos kx_1 \sin \omega t$$
 (h)

1

and the perturbation pressure at $x_1 = -L$ is

$$p'(-L, t) = \frac{\int_{0}^{0} \int_{0}^{0} da}{\sin kL} \cos kL \sin \omega t$$
 (i)

Part b

There will be resonances in the pressure if

$$\sin kL = 0 \tag{j}$$

or
$$kL = n\pi$$
 $n = 1, 2, 3....$ (k)

Thus

$$\omega = \frac{n\pi}{L} a \qquad (l)$$

PROBLEM 13.8

Part a

We carry through an analysis similar to that performed in section 13.2.3b. We assume that

$$\overline{E} = \overline{i}_2 E_2(x_1, t)$$

$$\overline{J} = \overline{i}_2 J_2(x_1, t)$$

PROBLEM 13.8

$$\overline{B} = \overline{i}_{3} [\mu_{0}H + \mu_{0}H'_{3}(x_{1},t)]$$

Conservation of momentum yields

$$\rho \frac{D \mathbf{v}_1}{D t} = -\frac{\partial \mathbf{p}}{\partial \mathbf{x}_1} + J_2 \mu_0 (\mathbf{H}_0 + \mathbf{H}_3')$$
(a)

Conservation of energy gives us

$$\rho \frac{D}{Dt} (u + \frac{1}{2}v_1^2) = -\frac{\partial}{\partial x_1} (pv_1) + J_2 E_2$$
 (b)

We use Ampere's and Faraday's laws to obtain

$$\frac{\partial H_{3}^{\prime}}{\partial x_{1}} = -J_{2}$$
 (c)

$$\frac{\partial E_2}{\partial x_1} = -\frac{\mu_0 \partial H'_3}{\partial t}$$
(d)

while

and

Ohm's law yields

$$J_{2} = \sigma[E_{2} - v_{B}]$$
(e)
ace $\sigma \neq \infty$

Sin

$$E_2 = v_B \tag{f}$$

We linearize, as in Eq. (13.2.91), so E $\begin{array}{c} \approx & v \downarrow H \\ & 1 \\ 0 \end{array}$

Substituting into Faraday's law

$$\mu_{o}H_{o}\frac{\partial \mathbf{v}_{1}}{\partial \mathbf{x}_{1}} = -\mu_{o}\frac{\partial H_{3}'}{\partial t}$$
(g)

Linearization of the conservation of mass yields

$$\frac{\partial \rho'}{\partial t} = -\rho_0 \frac{\partial v_1}{\partial x_1}$$
(h)

Thus, from (g)

$$\frac{\mu_{o}^{H}}{\rho_{o}}\frac{\partial\rho'}{\partial t} = \mu_{o}\frac{\partial H'}{\partial t}$$
(1)

Then

$$\frac{H_{o}}{H_{3}^{\prime}} = \frac{\rho_{o}}{\rho^{\prime}}$$

Linearizing Eq. (13.2.71), we obtain

$$\frac{Dp'}{Dt} = \frac{\gamma P_o}{\rho_o} \frac{D\rho'}{Dt}$$
(k)

PROBLEM 13.8 (continued)

Defining the acoustic speed

$$a_{s} = \left(\frac{\gamma p_{o}}{\rho_{o}}\right)^{1/2} \text{ where } p_{o} \text{ is the equilibrium pressure,}$$
$$p_{o} = p_{1} - \frac{\mu_{o} H_{o}^{2}}{2}$$

we have

 $p' = a_s^2 \rho'$ (1)

Linearization of convervation of momentum (a) yields

$$\rho_{o} \frac{\partial \mathbf{v}_{1}}{\partial t} = -\frac{\partial \mathbf{p}'}{\partial \mathbf{x}_{1}} - \frac{\partial \mathbf{H}'}{\partial \mathbf{x}_{1}} \mu_{o}^{H} \mathbf{v}_{o}$$
(m)

or, from (j) and (l),

$$\rho_{o} \frac{\partial v_{1}}{\partial t} = \frac{\partial \rho'}{\partial x_{1}} \left(-a_{s}^{2} - \frac{\mu_{o} h^{2}}{\rho_{o}} \right)$$
(n)

Differentiating (n) with respect to time, and using conservation of mass (h), we finally obtain

$$\frac{\partial^2 v_1}{\partial t^2} = \left(a_s^2 + \frac{\mu_o H_o^2}{\rho_o}\right) \frac{\partial^2 v_1}{\partial x_1^2}$$
(o)

Defining

$$a^{2} = a_{s}^{2} + \frac{\mu_{o} H_{o}^{2}}{\rho_{o}}$$
 (p)

we have

$$\frac{\partial^2 v_1}{\partial t^2} = a^2 \frac{\partial^2 v_1}{\partial x_1^2}$$
(q)

<u>Part b</u>

We assume solutions of the form

$$V_{1} = \operatorname{Re} \left[A_{1}e^{j(\omega t - kx_{1})} + A_{2}e^{j(\omega t + kx_{1})}\right]$$
(r)
= $\frac{\omega}{2}$

where $k = \frac{\omega}{a}$

The boundary condition at $x_1 = -L$ is

$$V(-L,t) = V_s \cos \omega t = V_s \operatorname{Re} e^{j\omega t}$$
 (s)

and at $x_1 = 0$

$$M \frac{dv_1(0,t)}{dt} = p'A \Big|_{x_1=0} + \mu_0 H_0 H_3' A \Big|_{x_1=0}$$
(t)

From (h), (j) and (l),

$$\frac{1}{a_{s}^{2}}\frac{\partial p'}{\partial t} = -\rho_{0}\frac{\partial v_{1}}{\partial x_{1}}$$
(u)

•

91

ELECTROMECHANICS OF COMPRESSIBLE, INVISCID FLUIDS

PROBLEM 13.8 (continued)

$$\frac{H_3'}{H_0} = \frac{p'}{a_s^2 \rho_0}$$
(v)

Thus

$$M \frac{dv_1(0,t)}{dt} = A \left(\frac{\mu_0 H^2}{a_s^2 \rho_0} + 1 \right) p' = A \frac{a^2}{a_s^2} p' \qquad (w)$$

From (u), we solve for p' to obtain:

$$p'|_{x_1=0} = -\frac{\frac{\rho_0 a_s^2 k}{w}}{w} (A_2 - A_1) e^{j\omega t}$$
 (x)

Substituting into (s) and (t), we have

$$M_{jw}(A_{1} + A_{2}) = A \left(\frac{a}{a_{s}}\right)^{2} \left(\frac{\rho_{0} a^{2}k}{w}\right) (A_{1} - A_{2})$$

+ik? -ik? (y)

and

$$A_1 e^{+jk\ell} + A_2 e^{-jk\ell} = V_s$$

Solving for A_1 and A_2 , we obtain

$$A_{1} = \frac{(Mjw + Aa\rho_{o})V_{s}}{2(-Mw \sin k\ell + Aa\rho_{o}\cos k\ell)}$$

$$A_{2} = \frac{(Aa\rho_{o} - Mjw)V_{s}}{2(-Mw \sin k\ell + Aa\rho_{o}\cos k\ell)}$$
(z)

Thus, the velocity of the piston is

$$v_{1}(0,t) = \operatorname{Re} \left[A_{1} + A_{2}\right]e^{j\omega t}$$

$$v_{1}(0,t) = \frac{\operatorname{Aap} V_{s}}{-\operatorname{Mw} \sin kl + \operatorname{Aap} \cos kl} \cos \omega t \qquad (aa)$$

PROBLEM 13.9

Part a

The differential equation for the velocity as derived in problem 13.8 is

$$\frac{\partial^2 v_1}{\partial t^2} = a^2 \frac{\partial^2 v_1}{\partial x_1^2}$$

$$a^2 = a^2_s + \frac{\mu_0^{H_0^2}}{\rho_0}$$
(a)

where

with
$$a_s^2 = \left(\frac{\gamma p_o}{\rho_o}\right)^{1/2}$$
 where $p_o = p_1 - \frac{\mu_o H_o^2}{2}$

Part b

We assume a solution of the form

PROBLEM 13.9 (continued)

$$V(x_1,t) = Re [De^{j(\omega t - kx_1)}]$$
 where $k = \frac{w}{a}$

We do not consider the negatively traveling wave, as we want to use this system as a delay line without distortion. The boundary condition at $x_1 = -L$ is

$$V(-L,t) = \text{Re } V_{s}e^{j\omega t}$$

and at x₁ = 0 is
$$M \frac{dV(0,t)}{dt} = p'(0,t)A - BV_{1}(0,t) + \mu_{0}H_{3}H' A \qquad (b)$$

From problem 13.8, (h), (j) and (l)

$$p' = a_s^2 \rho'$$
, $\frac{\partial \rho'}{\partial t} = -\rho_o \frac{\partial v_1}{\partial x_1}$ and $\frac{H'}{H_o} = \frac{p'}{a_s^2 \rho_o}$

Thus, (b) becomes

$$-BDe^{j\omega t} + \left(\frac{a}{a}\right)^{2} p'A = 0$$
 (c)

$$p' \bigg|_{\substack{k=0 \\ x = 0}} = - \frac{\rho_o^{D(-jk)}}{j w} a_s^2 e^{j\omega t}$$
(d)

Thus, for no reflections

$$-B + (\frac{a}{a}) \frac{A\rho_{o}a^{2}}{a} = 0$$
 (e)

or

$$B = Aa\rho_{0}$$
(f)

PROBLEM 13.10

The equilibrium boundary conditions are

$$T[-(L_1 + L_2 + \Delta), t] = T_o$$

 $T[-(L_1 + \Delta), t]A_s = -p_oA_c$

Boundary conditions for incremental motions are

1)
$$T[-(L_1 + L_2 + \Delta), t] = T_g(t)$$

2) $-T[-(L_1 + \Delta), t]A_g - p(-L_1, t)A_c = M \frac{d}{dt} v_{\ell}(-L_1, t)$
3) $v_{\ell}(-L_1, t) = v_e[-(L_1 + \Delta), t]$ since the mass is rigid
and 4) $v_{\ell}(0, t) = 0$ since the wall at x=0 is fixed.
PROBLEM 13.11

Part a

We can immediately write down the equation for perturbation velocity, using equations (13.2.76) and (13.2.77) and the results of chapters 6 and 10.

PROBLEM 13.11 (continued)

We replace $\partial/\partial t$ by $\partial/\partial t + v \cdot \nabla$ to obtain

.

$$\left(\frac{\partial}{\partial t} + V_{o} \frac{\partial}{\partial x}\right)^{2} \mathbf{v}' = \mathbf{a}_{s}^{2} \frac{\partial^{2} \mathbf{v}'}{\partial x^{2}}$$

Letting $\mathbf{v}' = \operatorname{Re} \hat{\mathbf{v}} e^{j(\omega t - kx)}$

we have

$$(\omega - kV_0)^2 = a_s^2 k^2$$

Solving for w, we obtain

$$\omega = k(V_0 \pm a_s)$$

Part b

Solving for k, we have

$$k = \frac{\omega}{V_{o} \pm a_{s}}$$

For $V_0 > a_s$, both waves propagate in the positive x- direction.

PROBLEM 13.12

Part a

We assume that

$$\overline{E} = \overline{i}_{z} E_{z}(x,t)$$

$$\overline{J} = \overline{i}_{z} J_{z}(x,t)$$

$$\overline{B} = \overline{i}_{y} \mu_{o}[H_{o} + H'_{y}(x,t)]$$

We also assume that all quantities can be written in the form of Eq. (13.2.91) .

$$\rho_{0} \frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial t} = -\frac{\partial \mathbf{p}'}{\partial \mathbf{x}} - J_{\mathbf{z}} \mu_{0} H_{0} \quad \text{(conservation of momentum (a)} \\ \text{linearized)}$$

The relevant electromagnetic equations are

$$\frac{\partial H'}{\partial x} = J_z$$
 (b)

and

$$\frac{\partial E_z}{\partial x} = \mu_0 \frac{\partial H'_y}{\partial t}$$
(c)

and the constitutive law is

$$J_{z} = \sigma(E_{z} + v_{x}\mu_{o}H_{o})$$
(d)

We recognize that Eqs. (13.2.94), (13.2.96) and (13.2.97) are still valid, so

$$\frac{1}{\rho_0} \frac{\partial \rho'}{\partial t} = -\frac{\partial v_x}{\partial x}$$
(e)

PROBLEM 13.12 (continued)

and

$$p' = a_s^2 \rho' \tag{f}$$

Part b

We assume all perturbation quantities are of the form

v_	=	Re[v	$e^{j(\omega t - kx)}$]	
'x		•··· •		

Using (b), (a) may be rewritten as

$$\rho_{o}jwv = + jkp + \mu_{o}H_{o}jkH$$
 (g)

and (c) may now be written as

$$jk\hat{E} = \mu_{o}j\omega\hat{H}$$
 (h)

Then, from (b) and (d)

$$-jk\hat{H} = \sigma(\hat{E} + v\mu_{o}H_{o})$$
(i)

Solving (g) and (h) for \hat{H} in terms of \hat{v} , we have

$$\hat{H} = \frac{v\sigma\mu_{o}H_{o}}{\left(-jk + \sigma\mu_{o}\frac{\omega}{k}\right)}$$
(j)

From (e) and (f), we solve for p in terms of v to be

$$\hat{\mathbf{p}} = \frac{\mathbf{k}}{\omega} \rho_0 \mathbf{a}_s^2 \hat{\mathbf{v}}$$
(k)

Substituting (j) and (k) back into (g), we find

$$\hat{\mathbf{v}} \left[\rho_{0} \mathbf{j} \omega - \frac{\mathbf{j} \mathbf{k}^{2}}{\omega} \rho_{0} \mathbf{a}_{s}^{2} - \frac{\mathbf{j} \mathbf{k} (\mu_{0} H_{0})^{2} \sigma}{\left[-\mathbf{j} \mathbf{k} + \frac{\sigma \mu_{0} \omega}{\mathbf{k}} \right]} \right] = 0 \qquad (\ell)$$

Thus, the dispersion relation is

$$(\omega^{2} - k^{2}a_{s}^{2}) - \frac{j(\mu_{o}H_{o})^{2}\omega k^{2}}{(+\frac{k^{2}}{\sigma} + j\mu_{o}\omega)\rho_{o}} = 0$$
(m)

We see that in the limit as $\sigma \rightarrow \infty$, this dispersion relation reduces to the lossless dispersion relation

$$\omega^{2} - k^{2} \left(a_{s}^{2} + \frac{\mu_{o} H^{2}}{\rho_{o}} \right) = 0$$
 (n)

<u>Part c</u>

If σ is very small, we can approximate (m) as

$$\omega^{2} - k^{2} a_{s}^{2} - j (\mu_{o} H_{o})^{2} \frac{\omega \sigma}{\rho_{o}} \left(1 - \frac{j \omega \mu_{o} \sigma}{k^{2}} \right) = 0 \qquad (o)$$

for which we can rewrite (o) as

PROBLEM 13.12 (continued)

$$k^{4}a_{g}^{2} - k^{2}\left[\omega^{2} - j\omega\sigma \frac{(\mu_{o}H_{o})^{2}}{\rho_{o}}\right] + \left(\frac{\mu_{o}H_{o}}{\rho_{o}}\right)^{2}\omega^{2}\sigma^{2}\mu_{o} = 0$$
 (p)

Solving for k^2 , we obtain

$$k^{2} = \frac{\omega^{2} - j\omega\sigma}{\frac{\rho_{o}}{2 a_{s}^{2}}} + \sqrt{\left[\frac{\omega^{2} - j\omega\sigma}{\frac{\rho_{o}}{2 a_{s}^{2}}}\right]^{2} \left(\frac{\mu_{o}^{2}\sigma^{2}}{\frac{\rho_{o}}{2 a_{s}^{2}}}\right)^{2} (\mu_{o}^{2} + \mu_{o}^{2})^{2}} \qquad (q)$$

Since σ is very small, we expand the radical in (q) to obtain

$$k^{2} = \frac{\left[\omega^{2} - j\omega\sigma \frac{(\mu_{o}H_{o})^{2}}{\rho_{o}}\right]}{2 a_{s}^{2}} \pm \left[\frac{\omega^{2} - \frac{j\omega\sigma}{\rho_{o}} (\mu_{o}H_{o})^{2}}{2 a_{s}^{2}} - \frac{\left(\frac{\mu_{o}\omega^{2}\sigma^{2}}{\rho_{o}}\right)(\mu_{o}H_{o})^{2}}{\left[\omega^{2} - \frac{j\omega\sigma}{\rho_{o}} (\mu_{o}H_{o})^{2}\right]}\right]$$
(r)

Thus, our approximate solutions for $\boldsymbol{k}^{\text{-}}$ are

$$k^{2} \approx \frac{\left[\omega^{2} - j\omega\sigma \frac{(\mu_{o}H_{o})^{2}}{\rho_{o}}\right]}{a_{s}^{2}}$$
(s)

and

•

$$k^{2} \approx \frac{\left(\frac{\mu_{o}\omega^{2}\sigma^{2}}{\rho_{o}}\right)(\mu_{o}H_{o})^{2}}{\left[\omega^{2}-\frac{j\omega\sigma}{\rho_{o}}(\mu_{o}H_{o})^{2}\right]} \approx \left(\frac{\mu_{o}\sigma^{2}}{\rho_{o}}\right)(\mu_{o}H_{o})^{2}$$
(t)

The wavenumbers for the first pair of waves are approximately:

$$k \approx \frac{+}{\left(\frac{\omega - j \frac{\sigma}{2\rho_{o}} (\mu_{o}H_{o})^{2}}{\frac{a_{s}}{s}}\right)}$$
(u)

while for the second pair, we obtain

$$k \sim \frac{1}{2} \sigma(\mu_0 H_0) \sqrt{\frac{\mu_0}{\rho_0}}$$
 (v)

The wavenumbers from (u) represent a forward and backward traveling wave, both with amplitudes exponentially decreasing. Such waves are called 'diffusion waves'. The wavenumbers from (v) represent pure propagating waves in the forward and reverse directions.

PROBLEM 13.12 (continued)

Part d

If σ is very large, then (m) reduces to

$$\omega^{2} - k^{2} a^{2} - j \frac{H_{o}^{2}}{\rho_{o}} \frac{k^{4}}{\sigma \omega} = 0 ; a^{2} = a_{s}^{2} + \frac{\mu_{o} H_{o}^{2}}{\rho_{o}}$$
(w)

This can be put in the form

$$k^{2} = \frac{\omega^{2}}{a^{2}} - j \frac{f(\omega, k)}{\sigma}$$

$$f(\omega, k) = \frac{H_{o}^{2} k^{4}}{\rho_{o} \omega a^{2}}$$
(x)

where

As σ becomes very large, the second term in (x) becomes negligible, and so

$$k^2 \sim \frac{\omega^2}{a^2}$$
 (y)

However, it is this second term which represents the damping in space; that is,

$$k \sim \frac{+}{2} \left[\frac{\omega}{a} - j \frac{f(\omega,k)}{2\sigma \omega} a \right]$$
 (z)

Thus, the approximate decay rate, k, is

$$k_{i} \approx \frac{f(\omega,k)a}{2\sigma \omega} = \frac{H_{o}^{2} k^{4}}{2\rho_{o} \omega a^{2} \sigma \omega}$$
(aa)
$$k_{i} \approx \frac{H_{o}^{2}}{2\rho_{o} a\sigma} \frac{k^{4}}{\omega^{2}} = \frac{H_{o}^{2}}{2\rho_{o} a^{5} \sigma} \omega^{2}$$

or