MIT OpenCourseWare
http://ocw.mit.edu

Solutions Manual for Electromechanical Dynamics

For any use or distribution of this solutions manual, please cite as follows:
Woodson, Herbert H., James R. Melcher, and Markus Zahn. Solutions Manual for Electromechanical Dynamics. vol. 3. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-NonCommercial-Share Alike

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

PROBLEM 12.1

Part a

Since we are in the steady state $(\partial / \partial t=0)$, the total forces on the piston must sum to zero. Thus

$$
\begin{equation*}
p L D+\left(f^{e}\right)_{x}=0 \tag{a}
\end{equation*}
$$

where $\left(f^{e}\right)_{x}$ is the upwards vertical component of the electric force

$$
\begin{equation*}
\left(f^{e}\right)_{x}=-\frac{\varepsilon_{o} V_{o}^{2}}{2 x^{2}} L D \tag{b}
\end{equation*}
$$

Solving for the pressure p, we obtain

$$
\begin{equation*}
p=\frac{\varepsilon_{0} v_{o}{ }^{2}}{2 x^{2}} \tag{c}
\end{equation*}
$$

Part b
Because $\frac{d}{L} \ll 1$, we approximate the velocity of the piston to be negligibly
small. Then, applying Bernoulli's equation, Eq. (12.2.11) right below the piston and at the exit nozzle where the pressure is zero, we obtain

$$
\begin{equation*}
\frac{1}{2} \rho V_{p}^{2}=\frac{\varepsilon_{0} V_{o}^{2}}{2 x^{2}} \tag{d}
\end{equation*}
$$

Solving for V_{p}, we have

$$
\begin{equation*}
v_{p}=\frac{v_{0}}{x} \sqrt{\frac{\varepsilon_{0}}{\rho}} \tag{e}
\end{equation*}
$$

Part c
The thrust T on the rocket is then

$$
\begin{align*}
T & =v_{p} \frac{d M}{d t}=v_{p}^{2} \rho d D \tag{f}\\
& =\frac{\varepsilon_{0} V_{o}^{2}}{x^{2}} d D
\end{align*}
$$

PROBLEM 12.2

Part a

The forces on the movable piston must sum to zero. Thus

$$
\begin{equation*}
\mathrm{pwD}-\mathbf{f}^{\mathrm{e}}=0 \tag{a}
\end{equation*}
$$

where f^{e} is the component of electrical force normal to the piston in the direction of V, and p is the pressure just to the right of the piston.

$$
\begin{equation*}
\mathrm{f}^{\mathrm{e}}=\frac{\mu_{\mathrm{o}}}{2} \frac{\mathrm{I}^{2} \mathrm{D}}{\mathrm{w}} \tag{b}
\end{equation*}
$$

PROBLEM 12.2 (Continued)
Therefore

$$
\begin{equation*}
p=\frac{\mu_{0} I^{2}}{2 W^{2}} \tag{c}
\end{equation*}
$$

Assuming that the velocity of the piston is negligible, we use Bernoulli's law, Eq. (12.2.11), just to the right of the piston and at the exit orifice where the pressure is zero, to write

$$
\begin{equation*}
\frac{1}{2} \rho v^{2}=p \tag{d}
\end{equation*}
$$

or
$\underline{\text { Part }} \mathrm{b}_{V}^{V}=\frac{I}{W} / \frac{\mu_{0}}{\rho}$
The thrust T is
$T=V \frac{d M}{d t}=V^{2} \rho d W=\frac{\mu_{0} I^{2} d}{W}$
Part c

$$
\text { For } I=10^{3} \mathrm{~A}
$$

$d=.1 \mathrm{~m}$
$\mathrm{w}=1 \mathrm{~m}$
$\rho=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
the exit velocity is
$\mathrm{V}=3.5 \times 10^{-2} \mathrm{~m} / \mathrm{sec}$.
and the thrust is
$\mathrm{T}=.126$ newtons.
Within the assumption that the fluid is incompressible, we would prefer a dense material, for although the thrust is independent of the fluid's density, the exhaust velocity would decrease with increasing density, and thus the rocket will work longer. Under these conditions, we would prefer water in our rocket, since it is much more dense than air.

PROBLEM 12.3
Part a
From the results of problem 12.2, we have that the pressure p, acting just to the left of the piston, is

$$
\begin{equation*}
\mathrm{p}=\frac{\mu_{\mathrm{O}} \mathrm{I}^{2}}{2 \mathrm{w}^{2}} \tag{a}
\end{equation*}
$$

The exit velocity at each orifice is obtainec by using Bernoulli's law just to the left of the piston and at either orifice, from which we obtain

PROBLEM 12.3 (Continued)

$$
\begin{equation*}
v=\left(\frac{\mu_{0}}{\rho}\right)^{1 / 2} \frac{I}{w} \tag{b}
\end{equation*}
$$

at each orifice.

Part b

The thrust is

$$
\begin{align*}
& T=2 V \frac{d M}{d t}=2 V^{2} \rho d_{w} \\
& T=\frac{2 \mu_{0} I^{2} d}{w} \tag{d}
\end{align*}
$$

(c)

PROBLEM 12.4

Part a

In the steady state, we choose to integrate the momentum theorem, Eq. (12.1.29), around a rectangular surface, enclosing the system from $-L \leq x_{1} \leq+L$.

$$
\begin{equation*}
-\rho V_{o}^{2} a+\rho[V(L)]^{2} b=P_{o} a-P(L) b+F \tag{a}
\end{equation*}
$$

where F is the x_{1} component force per unit length which the walls exert on the fluid. We see that there is no x_{1} component of force from the upper wall, therefore F is the force purely from the lower wall.

In the steady state, conservation of mass, (Eq. 12.1.8), yields

$$
\begin{equation*}
V(\ell)=V_{0} \frac{a}{b} \bar{i}_{1} \tag{b}
\end{equation*}
$$

Bernoulli's equation gives us

$$
\frac{1}{2} \rho v_{o}^{2}+P_{o}=\frac{1}{2} \rho v_{o}^{2} \frac{a^{2}}{b^{2}}+P(L)
$$

(c)

Solving (c) for $P(L)$, and then substituting this result and that of
(b) into
(a), we finally obtain

$$
\begin{equation*}
F=P_{o}(b-a)+\rho V_{o}^{2}\left(-a+\frac{b}{2}+\frac{a^{2}}{2 b}\right) \tag{d}
\end{equation*}
$$

The problem asked for the force on the lower wall, which is just the negative of F.
Thus

$$
\begin{equation*}
F_{w a 11}=-P_{0}(b-a)-\rho v_{o}^{2}\left(-a+\frac{a^{2}}{2 b}+\frac{b}{2}\right) \tag{e}
\end{equation*}
$$

PROBLEM 12.5
Part a
We recognize this problem to be analogous to a dielectric or high-permeability cylinder placed in a uniform electric or magnetic field. The solutions are then dipole fields. We expect similar results here. As in Eqs. (12.2.1-12.2.3), we

PROBLEM 12.5 (continued)
define

$$
\overline{\mathrm{V}}=-\nabla \phi
$$

and since
$\nabla \cdot \bar{v}=0$
then $\quad \nabla^{2} \phi=0$.
Using our experience from the electromagnetic field problems, we guess a solution of the form
$\phi=\frac{A}{r} \cos \theta+B r \cos \theta$
Then

$$
\bar{V}=\left(\frac{A}{r^{2}} \cos \theta-B \cos \theta\right) \bar{i}_{r}+\left(\frac{A}{r^{2}} \sin \theta+B \sin \theta\right) I_{\theta}
$$

Now, as $r \rightarrow \infty$

$$
v=v_{0} \bar{i}_{1}=v_{0}\left(\cos \theta \bar{i}_{r}-\bar{i}_{\theta} \sin \theta\right)
$$

Therefore

$$
B=-v_{0}
$$

The other boundary condition at $r=a$ is that

$$
V_{r}(r=a)=0
$$

Thus

$$
A=B a^{2}=-v_{0} a^{2}
$$

Therefore

$$
\vec{v}=v_{0} \cos \theta\left(1-\frac{a^{2}}{r^{2}} \bar{i}_{r}-v_{0} \sin \theta\left(1+\frac{a^{2}}{r^{2}}\right) \bar{i}_{\theta}\right.
$$

Part b

PROBLEM 12.5 (continued)

Part c
Using Bernoulli's law, we have

$$
\frac{1}{2} \rho V_{o}^{2}+p_{0}=\frac{1}{2} \rho V_{0}^{2}\left(1+\frac{a^{4}}{r^{4}}-\frac{2 a^{2}}{r^{2}} \cos 2 \theta\right)+P
$$

Therefore the pressure is

$$
P=p_{o}-\frac{1}{2} \rho V_{o}^{2}\left(\frac{a^{4}}{r^{4}}-\frac{2 a^{2}}{r^{2}} \cos 2 \theta\right)
$$

Part d
We choose a large rectangular surface which encloses the cylinder, but the sides of which are far away from the cylinder. We write the momentum theorem as

$$
\int_{S} \rho \bar{v}(\bar{v} \cdot \bar{n}) d a=-\int_{S} P d \bar{a}+\bar{F}
$$

where F is the force which the cylinder exerts on the fluid. However, with our surface far away from the cylinder

$$
v=v_{0} \bar{i}_{1}
$$

and the pressure is constant
$\mathrm{p}=\mathrm{P}_{\mathrm{o}}$.
Thus, integrating over the closed surface
$\overline{\mathrm{F}}=0$
The force which is exerted by the fluid on the cylinder is -F , which, however, is still zero.

```
ELECTROIECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS
```

PROBLEM 12.6

Part a

This problem is analogous to 12.5 , only we are now working in spherical coordinates. As in Prob. 12.5,

$$
\overline{\mathrm{V}}=-\nabla \phi
$$

In spherical coordinates, we try the solution to Laplace's equation

$$
\begin{equation*}
\phi=A r \cos \theta+\frac{\mathrm{B}}{\mathrm{r}^{2}} \cos \theta \tag{a}
\end{equation*}
$$

Theta is measured clockwise from the X_{1} axis.
Thus

$$
\begin{equation*}
\bar{V}=\left(-A \cos \theta+\frac{2 B}{r^{3}} \cos \theta\right) \bar{i}_{r}+\bar{i}_{\theta}\left(A+\frac{B}{r^{3}}\right) \sin \theta \tag{b}
\end{equation*}
$$

As $\mathbf{r} \rightarrow \infty$

$$
\begin{equation*}
\bar{V} \rightarrow V_{o}\left(\bar{i}_{r} \cos \theta-\bar{i}_{\theta} \sin \theta\right) \tag{c}
\end{equation*}
$$

Therefore $A=-V_{0}$
At $\mathrm{r}=\mathrm{a}$

$$
\begin{equation*}
V_{r}(a)=0 \tag{e}
\end{equation*}
$$

Thus

$$
\frac{2 B}{a^{3}}=A=-V_{0}
$$

or

$$
\begin{equation*}
B=-\frac{v_{0} a^{3}}{2} \tag{f}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
& \text { Therefore } \\
& \qquad \begin{array}{l}
\bar{V} \\
\text { with }
\end{array} \quad V_{0}\left(1-\frac{a^{3}}{r^{3}}\right) \cos \theta \overline{\mathrm{I}}_{r}-V_{0}\left(1+\frac{a^{3}}{2 r^{3}}\right) \sin \theta \overline{\mathrm{I}}_{\theta} \\
& \mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}
\end{aligned}
$$

Part b
At $r=a, \theta=\pi$, and $\phi=-\frac{\pi}{2}$
we are given that $p=0$
At this point

$$
\overline{\mathrm{V}}=0
$$

Therefore, from Bernoulli's law

$$
\begin{equation*}
p=-\frac{1}{2} \rho v_{0}^{2}\left[\left(1-\frac{a^{3}}{r^{3}}\right)^{2} \cos ^{2} \theta+\sin ^{2} \theta\left(1+\frac{a^{3}}{2 r^{3}}\right)^{2}\right] \tag{h}
\end{equation*}
$$

Part c
We realize that the pressure force acts normal to the sphere in the $-\overline{\mathbf{i}}_{\mathbf{r}}$ direction.

PROBLEM 12.6 (continued)
at $\mathbf{r}=\mathbf{a}$

$$
p=-\frac{9}{8} \rho V_{0}^{2} \sin ^{2} \theta
$$

We see that the magnitude of p remains unchanged if, for any value of θ, we look at the pressure at $\theta+\pi$. Thus, by the symmetry, the force in the x_{1} direction is zero,

$$
\bar{f}_{1}=0 .
$$

PROBLEM 12.7
rart a
We are given the potential of the velocity field as

$$
\phi=\frac{v_{0}}{a} x_{1} x_{2} . \quad \bar{v}=-\nabla \phi=-\frac{v_{0}}{a}\left(x_{2} \bar{i}_{1}+x_{1} \bar{i}_{2}\right)
$$

If we sketch the equipotential lines in the $x_{1} x_{2}$ plane, we know that the velocity distribution will cross these lines at right angles, in the direction of decreasing potential.
Part b

$$
\begin{align*}
\bar{a} & =\frac{d \bar{v}}{d t}=\frac{\partial \vec{v}}{\partial t}+(\bar{v} \cdot \nabla) \bar{v} \\
& =\left(\frac{v_{0}}{a}\right)^{2}\left(x_{1} \bar{i}_{1}+x_{2} \bar{i}_{2}\right) \tag{a}\\
\bar{a} & =\left(\frac{v_{0}}{a}\right)^{2} r \bar{i}_{r} \tag{b}
\end{align*}
$$

where $r=\sqrt{x_{1}^{2}+x_{2}^{2}}$ and \bar{i}_{r} is a unit vector in the radial direction.
Part c
This flow could represent a fluid impinging normally on a flat plate, located along the line

$$
x_{1}+x_{2}=0 . \quad \text { See sketches on next page. }
$$

PROBLEM 12.8
Part a
Given that

$$
\begin{equation*}
\bar{v}=\bar{i}_{1} v_{0} \frac{x_{2}}{a}+\bar{i}_{2} v_{0} \frac{x_{1}}{a} \tag{a}
\end{equation*}
$$

we have that

$$
\begin{align*}
\bar{a} & =\frac{d \bar{v}}{d t}=\frac{\partial \bar{v}}{\partial t}+(\bar{v} \cdot \nabla) \bar{v} \\
& =\left(v_{1} \frac{\partial}{\partial x_{1}}+v_{2} \frac{\partial}{\partial x_{2}}\right) \bar{v} \tag{b}
\end{align*}
$$

PROBLEM 12.8 (Continued)
Thus

$$
\bar{a}=v_{0}^{2} \frac{x_{1}}{a^{2}} \bar{i}_{1}+\left(\frac{v_{0}}{a^{2}}\right)^{2} x_{2} \bar{i}_{2}
$$

(c)

Part b
Using Bernoulli's law, we have

$$
\begin{align*}
p_{0} & =\frac{1}{2} \rho\left(\frac{v_{0}}{a}\right)^{2}\left(x_{2}^{2}+x_{1}^{2}\right)+p \tag{d}\\
p & =p_{0}-\frac{1}{2} \rho\left(\frac{v_{0}}{a}\right)^{2}\left(x_{2}^{2}+x_{1}^{2}\right) \\
& =p_{o}-\frac{1}{2} \rho v_{0}^{2} \frac{r^{2}}{a^{2}} \tag{e}
\end{align*}
$$

where

$$
r=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

PROBLEM 12.9
Part a
The addition of a gravitational force will not change the velocity from that of Problem 12.8. Only the pressure will change. Therefore,

$$
\begin{equation*}
\bar{v}=\bar{i}_{1} \frac{v_{0}}{a} x_{2}+\bar{i}_{2} \frac{v_{0}}{a} x_{1} \tag{a}
\end{equation*}
$$

Part b
The boundary conditions at the walls are that the normal component of the velocity must be zero at the walls. Consider first the wall

$$
\begin{equation*}
x_{2}-x_{1}=0 \tag{b}
\end{equation*}
$$

We take the gradient of this expression to find a normal vector to the curve. (Note that this normal vector does not have unit magnitude.)

$$
\begin{equation*}
\bar{n}=\bar{i}_{2}-\bar{I}_{1} \tag{c}
\end{equation*}
$$

Then

$$
\begin{equation*}
\bar{v} \cdot \bar{n}=\frac{v_{0}}{a}\left(x_{1}-x_{2}\right)=0 \tag{d}
\end{equation*}
$$

Thus, the boundary condition is satisfied along this wall.
Similarly, along the wall

$$
\begin{align*}
& x_{2}+x_{1}=0 \tag{e}\\
& \bar{n}=\bar{i}_{2}+\bar{i}_{1}
\end{align*}
$$

and

$$
\begin{equation*}
\bar{v} \cdot \bar{n}=\frac{v_{0}}{a}\left(x_{1}+x_{2}\right)=0 \tag{f}
\end{equation*}
$$

Thus, the boundary condition is satisfied here. Along the parabolic wall

$$
\begin{align*}
& x_{2}^{2}-x_{1}^{2}=a^{2} \tag{h}\\
& \bar{n}=x_{2} \bar{i}_{2}-x_{1} \bar{i}_{1} \tag{i}
\end{align*}
$$

PROBLEM 12.9 (Continued)

$$
\begin{equation*}
\bar{v} \cdot \bar{n}=\frac{v_{0}}{a}\left(x_{1} x_{2}-x_{1} x_{2}\right)=0 \tag{j}
\end{equation*}
$$

Thus, we have shown that along all the walls, the fluid flows purely tangential to these walls.

PROBLEM 12.10
Part a
Along the lines $x=0$ and $y=0$, the normal component of the velocity must be zero. In terms of the potential, we must then have

$$
\left.\frac{\partial \phi}{\partial x}\right|_{x=0}=0
$$

(a)
and

$$
\left.\frac{\partial \phi}{\partial y}\right|_{y=0}=0
$$

(b)

To aid in the sketch of $\phi(x, y)$, we realize that since at the boundary the velocity must be purely tangential, the potential lines must come in normal to the walls.

Part b
For the fluid to be irrotational and incompressible, the potential must obey

PROBLEM 12.10 (Continued)

Laplace's equaiion

$$
\nabla^{2} \phi=0
$$

(c)

From our sketch of part (a), and from the boundary conditions, we guess a solution of the form

$$
\begin{equation*}
\phi=-\frac{v_{0}}{a}\left(x^{2}-y^{2}\right) \tag{d}
\end{equation*}
$$

where $\frac{v_{0}}{a}$ is a scaling constant. By direct substitution, we see that this solution satisfies all the conditions.

Part c
For the potential of part (b), the velocity is

$$
\begin{equation*}
\bar{v}=-\nabla \phi=2 \frac{v_{0}}{a}\left(x \bar{i}_{x}-y \bar{i}_{y}\right): \tag{e}
\end{equation*}
$$

Using Bernoulli's equation, we obtain

$$
\begin{equation*}
p_{o}=p+2\left(\frac{v_{0}}{a}\right)^{2}\left(x^{2}+y^{2}\right) \tag{f}
\end{equation*}
$$

The net force on the wall between $x=c$ and $x=d$ is

$$
\overline{\mathrm{f}}=\int_{z=0}^{z=w} \int_{x=c}^{x=d}\left(p_{0}-p\right) d x d z \bar{i}_{y}
$$

where w is the depth of the wall.
Thus

$$
\begin{align*}
\bar{f} & =+\frac{\left(\frac{v_{0}}{a}\right)^{2}}{6} w \int_{y}^{d} x^{2} d x \bar{i}_{y} \\
& =+\frac{\left(\frac{v_{0}}{a}\right)^{2}}{6} w\left(d^{3}-c^{3}\right) \bar{i}_{y} \tag{h}
\end{align*}
$$

Part d
The acceleration is

$$
\bar{a}=(\bar{v} \cdot \nabla) \bar{v}=2 \frac{v_{0}}{a} x\left(2 \frac{v_{0}}{a} \bar{i}_{x}\right)-2 \frac{v_{0}}{a} y\left(-2 \frac{v_{0}}{a} y \bar{i}_{y}\right)
$$

or

$$
\begin{equation*}
\bar{a}=4\left(\frac{v_{0}}{a}\right)^{2}\left(x \bar{i}_{x}+y \bar{i}_{y}\right) \tag{i}
\end{equation*}
$$

or in cylindrical coordinates

$$
\begin{equation*}
\bar{a}=4\left(\frac{v_{0}}{a}\right)^{2} r \bar{i}_{r} \tag{j}
\end{equation*}
$$

PROBLEM 12.10 (Continued)

PROBLEM 12.11
Part a
Since the $\nabla \cdot \bar{v}=0$, we must have

$$
v_{o} h=v_{x}(x)(h-\xi)
$$

(a)
or

$$
\begin{equation*}
v_{x}(x)=\frac{v_{0} h}{h-\xi} \approx v_{0}\left(1+\frac{\xi}{h}\right) \tag{b}
\end{equation*}
$$

Part b
Using Bernoulli's law, we have

$$
\begin{align*}
& \frac{1}{2} \rho V_{0}+p_{o}=\frac{1}{2} \rho\left[V_{x}(x)\right]^{2}+P \tag{c}\\
& P=P_{o}+\frac{1}{2} \rho V_{o}^{2}-\frac{1}{2} \rho V_{o}^{2}\left(1+\frac{\xi}{h}\right)^{2} \tag{d}
\end{align*}
$$

Part C
We linearize P around $\xi=0$ to obtain

$$
\begin{equation*}
P \approx p_{0}-\rho V_{0}^{2} \frac{\xi}{h} \tag{e}
\end{equation*}
$$

Thus

$$
\begin{equation*}
T_{z}=-P+P_{0}=\rho V_{0}^{2} \frac{\xi}{h} \tag{f}
\end{equation*}
$$

PROBLEM 12.11 (continued)
Thus $\quad T_{z}=C \xi$
(g)
with

$$
\mathrm{C}=\frac{\rho \mathrm{v}_{\mathrm{o}}^{2}}{\mathrm{~h}}
$$

Part d
We can write the equations of motoion of the membrane as

$$
\begin{align*}
\sigma_{m} \frac{\partial^{2} \xi}{\partial t^{2}} & =S \frac{\partial^{2} \xi}{\partial x^{2}}+T_{z} \tag{h}\\
& =S \frac{\partial^{2} \xi}{\partial x^{2}}+c \xi \tag{i}
\end{align*}
$$

We assume

$$
\begin{equation*}
\xi(x, t)=\operatorname{Re} \hat{\xi} e^{j(\omega t-k x)} \tag{j}
\end{equation*}
$$

Solving for the dispersion relation, we obtain

$$
\begin{equation*}
-\sigma_{m} \omega^{2}=-\mathrm{Sk}^{2}+\mathrm{C} \tag{k}
\end{equation*}
$$

or

$$
\omega=\left[\frac{S}{\sigma_{m}} k^{2}-\frac{c}{\sigma_{m}}\right]^{1 / 2}
$$

Now, since the membrane is fixed at $x=0$ and $x=L$, we know that

$$
\mathrm{k}=\frac{\mathrm{n} \pi}{\ell} \quad \mathrm{n}=1,2,3, \ldots \ldots
$$

(m)

Now if

$$
\begin{equation*}
S\left(\frac{\pi}{l}\right)^{2}-c<0 \tag{n}
\end{equation*}
$$

we realize that the membrane will become unstable.
So for

$$
\begin{equation*}
\frac{\rho v_{o}^{2}}{h}<S\left(\frac{\pi}{l}\right)^{2} \tag{o}
\end{equation*}
$$

we have stability.
Part e
As ξ increases, the velocity of the flow above the membrane increases, since the fluid is incompressible. Through Bernoulli's law, the pressure on the membrane must decrease, thereby increasing the net upwards force on the membrane, which tends to make ξ increase even further, thus making the membrane become unstable.

Part a

We wish to write the equation of motion for the membrane.

$$
\begin{equation*}
\sigma_{m} \frac{\partial^{2} \xi}{\partial t^{2}}=s \frac{\partial^{2} \xi}{\partial x^{2}}+p_{1}(\xi)-p_{0}+T^{e}-\sigma_{m} g \tag{a}
\end{equation*}
$$

where

$$
T^{e}=\frac{\varepsilon_{o}}{2}\left(\frac{V_{o}}{d-\xi}\right)^{2} \approx \frac{\varepsilon_{0}}{2} \frac{V_{o}^{2}}{d^{2}}\left(1+\frac{2 \xi}{d}\right)
$$

is the electric force per unit area on the membrane.
In the equilibrium $\xi(x, t)=0$, we must have

$$
\begin{equation*}
p_{1}(0)=p_{0}-\frac{\varepsilon_{0}}{2}\left(\frac{V_{0}}{d}\right)^{2}+\sigma_{m} g \tag{b}
\end{equation*}
$$

As in example 12.1.3

$$
p_{1}=-\rho g y+c
$$

and, using the boundary condition of (b), we obtain

$$
\begin{equation*}
p_{1}=-\rho g y+\sigma_{m} g+p_{o}-\frac{\varepsilon_{0}}{2}\left(\frac{V_{o}}{d}\right)^{2} \tag{c}
\end{equation*}
$$

Part b
We are interested in calculating the perturbations in p_{1} for small deflections of the membrane. From Bernoulli's law, a constant of motion of the fluid is D, where D equals

$$
\begin{equation*}
D=\frac{1}{2} \rho U^{2}+\sigma_{m} g+p_{o}-\frac{\varepsilon_{0}}{2}\left(\frac{V_{\mathrm{O}}}{\mathrm{~d}}\right)^{2} \tag{d}
\end{equation*}
$$

For small perturbations $\xi(x, t)$, the velocity in the region $0 \leq x \leq L$ is

$$
\mathrm{v}=\frac{\mathrm{Ud}}{\mathrm{~d}+\xi}
$$

We use Bernoulli's law to write

$$
\begin{equation*}
\frac{1}{2} \rho v^{2}+p_{1}(\xi)+\rho g \xi=D \tag{e}
\end{equation*}
$$

Since we have already taken care of the equilibrium terms, we are interested only in small changes of p_{1}, so 'we omit constant terms in our linearization of p_{1}.
Thus

$$
\begin{equation*}
p_{1}(\xi)=-\rho g \xi+\frac{\rho U^{2} \xi}{d} \tag{f}
\end{equation*}
$$

Thus, our linearized force equation is

$$
\begin{equation*}
\sigma_{m} \frac{\partial^{2} \xi}{\partial t^{2}}=s \frac{\partial^{2} \xi}{\partial x^{2}}+\left(\frac{\rho U^{2}}{d}-\rho g+\frac{\varepsilon_{0} v_{o}^{2}}{d^{3}}\right) \xi \tag{g}
\end{equation*}
$$

We define

$$
c=-\rho g+\frac{\rho U^{2}}{d}+\frac{\varepsilon_{0} V_{0}^{2}}{d^{3}}
$$

and assume solutions of the form

$$
\xi(x, t)=\operatorname{Re} \hat{\xi} e^{j(\omega t-k x)}
$$

PROBLEM 12.12 (Continued)

from which we obtain the dispersion relation

$$
\begin{equation*}
\omega=\left(\frac{S}{\sigma_{m}} k^{2}-\frac{C}{\sigma_{m}}\right)^{1 / 2} \tag{h}
\end{equation*}
$$

Since the membrane is fixed at $x=0$ and at $x=L$

$$
\begin{equation*}
\mathrm{k}=\frac{\mathrm{n} \pi}{\mathrm{~L}} . \quad \mathrm{n}=1,2,3, \ldots \ldots \tag{i}
\end{equation*}
$$

If $C<0$, then ω is always real, and we can have oscillation about the equilibrium. For $C>S\left(\frac{\pi}{L}\right)^{2}$, then ω will be imaginary, and the system is unstable.
Part c
The dispersion relation is thus
$\omega=\left(\frac{S}{\sigma_{m}} k^{2}-\frac{C}{\sigma_{m}}\right)^{1 / 2}$
Consider first C <0

PROBLEM 12.12 (Continued)
Part d
Since the membrane is not moving, ne wave propagates upstream and the other propagates downstream. Thus, to find the solution we need two boundary conditions, one upstream and one downstream. If, however, both waves had propagated downstream, then causality does not allow us to apply a downstream boundary condition. This is not the case here.

PROBLEM 12.13
Part a
Since $\nabla \cdot \bar{v}=0$, in the region $0 \leq x \leq L$,

$$
\begin{equation*}
v_{x}=\frac{v_{0} d}{d+\xi_{1}-\xi_{2}} \approx v_{0}\left[1-\frac{\left(\xi_{1}-\xi_{2}\right)}{d}\right] \tag{a}
\end{equation*}
$$

where d is the spacing between membranes. Using Bernoulli's law, we can find the pressure p_{1} right below membrane 1 , and pressure p_{2} right above membrane 2 . Thus

$$
\begin{equation*}
\frac{1}{2} \rho v_{0}^{2}+p_{0}=\frac{1}{2} \rho v_{x}^{2}+p_{1} \tag{b}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2} \rho v_{0}^{2}+p_{0}=\frac{1}{2} \rho v_{x}^{2}+p_{2} \tag{c}
\end{equation*}
$$

Thus

$$
\begin{equation*}
p_{1}=p_{2} \approx p_{0}+\frac{\rho v_{0}^{2}\left(\xi_{1}-\xi_{2}\right)}{d} \tag{d}
\end{equation*}
$$

We may now write the equations of motion of the membranes as

$$
\begin{align*}
& \sigma_{m} \frac{\partial^{2} \xi_{1}}{\partial t^{2}}=S \frac{\partial^{2} \xi_{1}}{\partial x^{2}}+\left(p_{1}-p_{o}\right)=S \frac{\partial^{2} \xi_{1}}{\partial x^{2}}+\frac{\rho V_{o}^{2}\left(\xi_{1}-\xi_{2}\right)}{d} \tag{e}\\
& \sigma_{m} \frac{\partial^{2} \xi_{2}}{\partial t^{2}}=S \frac{\partial^{2} \xi_{2}}{\partial x^{2}}+p_{o .}-p_{2}=S \frac{\partial^{2} \xi_{2}}{\partial x^{2}}-\frac{\rho V_{o}^{2}\left(\xi_{1}-\xi_{2}\right)}{d} \tag{f}
\end{align*}
$$

Assume solutions of the form

$$
\begin{align*}
\xi_{1} & =\operatorname{Re} \hat{\xi}_{1} e^{j(\omega t-k x)} \\
\xi_{2} & =\operatorname{Re} \hat{\xi}_{2} e^{j(\omega t-k x)} \tag{g}
\end{align*}
$$

Substitution of these assumed solutions into our equations of motion will yield the dispersion relation

$$
\begin{align*}
-\sigma_{m} \omega^{2} \hat{\xi}_{1} & =-\operatorname{Sk}^{2} \hat{\xi}_{1}+\frac{\rho V_{o}^{2}}{d}\left(\hat{\xi}_{1}-\hat{\xi}_{2}\right) \\
-\sigma_{m} \omega^{2} \hat{\xi}_{2} & =-\operatorname{Sk}^{2} \hat{\xi}_{2}+\frac{\rho V_{0}^{2}}{d}\left(\hat{\xi}_{2}-\hat{\xi}_{1}\right) \tag{h}
\end{align*}
$$

These equations may be rewritten as

PROBLEM 12.13 (Continued)

$$
\begin{align*}
& \hat{\xi}_{1}\left[-\sigma_{m} \omega^{2}+S k^{2}-\frac{\rho V_{o}^{2}}{d}\right]+\hat{\xi}_{2}\left[+\frac{\rho V_{o}^{2}}{d}\right]=0 \\
& \hat{\xi}_{1}\left[\frac{\rho V_{o}^{2}}{d}\right]+\hat{\xi}_{2}\left[-\sigma_{m} \omega^{2}+S k^{2}-\frac{\rho V_{o}^{2}}{d}\right]=0 \tag{i}
\end{align*}
$$

For non-trivial solution, the determinant of coefficients of ξ_{1} and ξ_{2} must be
thus $\quad\left[-\sigma_{m} \omega^{2}+S k^{2}-\frac{\rho V_{o}^{2}}{d}\right]^{2}=\left[\frac{\rho V_{0}^{2}}{d}\right]^{2}$
or

$$
\begin{equation*}
-\sigma_{m} \omega^{2}+S k^{2}-\frac{\rho V_{o}^{2}}{d}= \pm \frac{\rho V_{o}^{2}}{d} \tag{j}
\end{equation*}
$$

If we take the upper sign (+) on the right-hand side of the above equation, we obtain

$$
\omega=\left[\frac{S}{\sigma_{m}} k^{2}-\frac{2 \rho v_{o}^{2}}{\sigma_{m} d}\right]^{1 / 2}
$$

We see that if V_{o} is large enough, ω can be imaginary. This can happen when

$$
\begin{equation*}
V_{o}^{2}>\frac{S k^{2} d}{2 \rho} \tag{m}
\end{equation*}
$$

Since the membranes are fixed at $x=0$ and $x=L$

$$
\begin{equation*}
\mathrm{k}=\frac{\mathrm{n} \pi}{\mathrm{~L}} \quad \mathrm{n}=1,2,3, \ldots \ldots \tag{n}
\end{equation*}
$$

So the membranes first become unstable when

$$
\begin{equation*}
\cdot V_{0}^{2}>\frac{S\left(\frac{\pi}{L}\right)^{2} d}{2 \rho} \tag{o}
\end{equation*}
$$

For this choice of $\operatorname{sign}(+), \xi_{1}=-\xi_{2}$, so we excite the odd mode. If we had taken the negative sign, then the even mode would be excited

$$
\xi_{1}=\xi_{2} .
$$

However, the dispersion relation is then

$$
\omega= \pm \frac{S}{\sigma_{m}} k
$$

and then we would have no instability.
Part b
The odd mode is unstable.

or

PROBLEM 12.14
Part a
The force equation in the y direction is

$$
\begin{equation*}
\frac{\partial p}{\partial y}=-\rho g \tag{a}
\end{equation*}
$$

Thus

$$
\begin{equation*}
p=-\rho g(y-\xi) \tag{b}
\end{equation*}
$$

where we have used the fact that at $y=\xi$, the pressure is zero.
Part b

$$
\begin{align*}
& \nabla \cdot \bar{v}=0 \text { implies } \\
& \frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}=0 \tag{c}
\end{align*}
$$

Integrating with respect to y, we obtain

$$
\begin{equation*}
v_{y}=-\frac{\partial v_{x}}{\partial x} y+c \tag{d}
\end{equation*}
$$

where C is a constant of integration to be evaluated by the boundary condition at $y=-a$, that

$$
v_{y}(y=-a)=0
$$

since we have a rigid bottom at $y=-a$.
Thus

$$
\begin{equation*}
v_{y}=-\frac{\partial v_{x}}{\partial x}(y+a) \tag{e}
\end{equation*}
$$

Part c
The x-component of the force equation is

$$
\begin{equation*}
\rho \frac{\partial v_{x}}{\partial t}=-\frac{\partial p}{\partial x}=-\rho g \frac{\partial \xi}{\partial x} \tag{f}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial v_{x}}{\partial t}=-g \frac{\partial \xi}{\partial x} \tag{g}
\end{equation*}
$$

Part d
At $\mathrm{y}=\xi$,

$$
\begin{equation*}
\mathbf{v}_{\mathbf{y}}=\frac{\partial \xi}{\partial t} \tag{h}
\end{equation*}
$$

Thus, from part (b), at $y=\xi$

$$
\begin{equation*}
\frac{\partial \xi}{\partial t}=-\frac{\partial v x}{\partial x}(\xi+a) \tag{i}
\end{equation*}
$$

However, since $\xi \ll a$, and v_{x} and v_{y} are small perturbation quantities, we can approximately write

$$
\begin{equation*}
\frac{\partial \xi}{\partial t}=-a \frac{\partial v_{x}}{\partial x} \tag{j}
\end{equation*}
$$

Parte
Our equations of motion are now

PROBLEM 12.14 (Continued)

$$
\begin{equation*}
\frac{\partial \xi}{\partial t}=-a \frac{\partial v_{x}}{\partial x} \tag{k}
\end{equation*}
$$

and

$$
\frac{\partial v_{x}}{\partial t}=-g \frac{\partial \xi}{\partial x}
$$

If we take $\partial / \partial x$ of $\quad(k)$ and $\partial / \partial t$ of
(ℓ) and then simplify, we obtain

$$
\begin{equation*}
\frac{\partial^{2} v_{x}}{\partial t^{2}}=\text { ag } \frac{\partial^{2} v_{x}}{\partial x^{2}} \tag{m}
\end{equation*}
$$

We recognize this as the wave equation for gravity waves, with phase velocity

$$
v_{p}=\sqrt{a g}
$$

(n)

PROBLEM 12.15
Part a
As shown in Fig. 12P.15b, the H field is in the $-\overline{\mathrm{i}}$ direction with magnitude:

$$
\left|H_{s}\right|=\frac{I_{o}}{2 \pi r_{s}}
$$

If we integrate the MST along the surface defined in the above figure, the only contribution will be along surface (1), so we obtain for the normal traction

$$
\begin{equation*}
\tau_{n}=-\frac{1}{2} \mu_{0}\left|H_{s}\right|^{2}=-\frac{1}{8} \frac{\mu_{0} I_{0}}{\pi^{2} r_{s}^{2}} \tag{b}
\end{equation*}
$$

Part b
Since the net force on the interface must be zero, we must have

$$
\begin{equation*}
\tau_{n}+p_{i n t}-p_{o}=0 \tag{c}
\end{equation*}
$$

where $p_{\text {int }}$ is the hydrostatic pressure on the fluid side of the interface.

PROBLEM 12.15 (continued)
Thus $\quad p_{\text {int }}=p_{0}+\frac{1}{8} \frac{\mu_{0} I_{o}{ }^{2}}{\pi^{2} r^{2}}$
Within the fluid, the pressure p must obey the relation

$$
\begin{align*}
& \frac{\partial p}{\partial z}=-\rho g \tag{e}\\
& p=-\rho g z+C \tag{f}
\end{align*}
$$

or

Let us look at the point $z=z_{o}, r=R_{o}$. There

$$
\begin{equation*}
\mathrm{p}=-\rho \mathrm{g} z_{0}+\mathrm{C}=\mathrm{p}_{0}+\frac{1}{8} \frac{\mu_{0} \mathrm{I}_{0}^{0_{2}}}{\pi^{2} \mathrm{R}_{0}^{2}} \tag{g}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
c=\rho g z_{0}+p_{0}+\frac{1}{8} \frac{\mu_{0} I_{0}^{2}}{\pi^{2} R_{0}^{2}} \tag{h}
\end{equation*}
$$

Now let's look at any point on the interface with coordinates z_{s}, r_{s}
Then, by Bernoulli's law,

$$
\begin{equation*}
p_{0}+\frac{1}{8} \frac{\mu_{0} I_{0}^{2}}{\pi^{2} R_{0}^{2}}+\rho g z_{o}=\frac{1}{8} \frac{\mu_{0} I_{0}^{2}}{\pi^{2} r_{s}^{2}}+p_{0}+\rho g z_{s} \tag{i}
\end{equation*}
$$

Thus, the equation of the surface is

$$
\begin{equation*}
\rho g z_{s}+\frac{1}{8} \frac{\mu_{0} I_{o}^{2}}{\pi^{2} r_{s}^{2}}=\rho g z_{o}+\frac{1}{8} \frac{\mu_{0} I_{o}^{2}}{\pi^{2} R_{0}^{2}} \tag{j}
\end{equation*}
$$

Part c
The total volume of the fluid is

$$
\begin{equation*}
V=\pi\left[R_{0}^{2}-\left(\frac{b}{2}\right)^{2}\right] a \tag{k}
\end{equation*}
$$

We can find the value of z_{0} by finding the volume of the deformed fluid in terms of z_{o}, and then equating this volume to V.
Thus

$$
\begin{align*}
& \text { Ehen equating this volume to } \mathrm{V} . \\
& \left.\mathrm{V}=\pi\left[R_{0}^{2}-\left(\frac{b}{2}\right)^{2}\right] a=2 \pi \int_{\mathrm{r}=\mathrm{r}_{0}}^{R_{0}\left[z_{\mathrm{o}}\right.} \int_{\mathrm{z}=0}+\frac{1}{8} \frac{\mu_{0} I_{o}^{2}}{\rho g \pi^{2}}\left(\frac{1}{R_{0}^{2}}-\frac{1}{r^{2}}\right)\right] \\
& r d r d z
\end{align*}
$$

where

$$
\begin{gather*}
r_{0} \text { is that value of } r \text { when } z=0 \text {, or } \\
r_{0}=\left[\frac{\frac{1}{8} \frac{\mu_{0} I_{o}{ }^{2}}{\pi^{2}}}{\rho g z_{0}+\frac{1}{8} \frac{\mu_{0} I_{0}{ }^{2}}{\pi^{2} R_{0}^{2}}}\right]^{1 / 2} \tag{m}
\end{gather*}
$$

Evaluating this integral, and equating to V, will determine z_{0}.

PROBLEM 12.16
We do an analysis similar to that of Sec. 12.2.la, to obtain

$$
\begin{equation*}
E=-\bar{i}_{y} \frac{V}{w} \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{J}=\bar{i}_{y} \sigma\left(-\frac{v}{w}+v B\right)=\frac{I}{\ell d} \bar{i}_{y} \tag{b}
\end{equation*}
$$

Here

$$
\begin{equation*}
V=I R+V_{0} \tag{c}
\end{equation*}
$$

Thus

$$
I=\frac{v B w-v_{o}}{R+\frac{w}{\ell d \sigma}}
$$

The electric power out is

$$
\begin{aligned}
P_{e}=V I & =\left(I R+V_{o}\right) I \\
& =\left[V_{0}+\frac{R\left(v B w-v_{0}\right)}{R+\frac{w}{\ell d \sigma}}\right]\left[\frac{v B w-V_{0}}{R+\frac{w}{\ell d \sigma}}\right]
\end{aligned}
$$

(e)

From equations (12.2.23-12.2.25)
we have

$$
\begin{equation*}
\Delta p=p(0)-p(\ell)=\frac{I B}{d} \tag{f}
\end{equation*}
$$

Thus, the mechanical power in is

$$
\begin{equation*}
P_{M}=(\Delta p w d) v=\frac{B w\left(v B w-v_{0}\right) v}{R+\frac{w}{\ell d \sigma}} \tag{g}
\end{equation*}
$$

Plots of P_{E} and P_{M} versus v specify the operating regions of the MHD machine.

PROBLEM 12.17
Part a
The mechanical power input is

$$
\begin{equation*}
P_{M}=-\int_{z=0}^{L} \int_{y=0}^{w} \int_{x=0}^{d p v_{o} d x d y d z} \tag{a}
\end{equation*}
$$

The force equation in the steady state is

$$
\begin{equation*}
-\nabla \mathrm{p}+\mathrm{f}^{\mathrm{e}}=0 \tag{b}
\end{equation*}
$$

where

$$
\begin{equation*}
f^{e}=-J_{y}^{B}{ }_{o} \tag{c}
\end{equation*}
$$

Thus

$$
\begin{equation*}
P_{M}=\int_{z=0}^{L} \int_{y=0}^{w} \int_{x=0}^{d} J_{y} B_{o} v_{o} d x d y d z \tag{d}
\end{equation*}
$$

Now

$$
\begin{equation*}
J_{y}=\sigma\left(E_{y}+v_{o} B_{o}\right)=\sigma\left(-\frac{\partial \phi}{\partial y}+v_{o} B_{o}\right) \tag{e}
\end{equation*}
$$

Integrating, we obtain

$$
\begin{align*}
P_{M} & =\sigma v_{o}^{2} B_{o} L w d-\sigma B_{o} v_{o} V L d \tag{f}\\
& =\frac{v_{o c}^{2}}{R I}-\frac{V V_{O C}}{R_{i}}=\frac{1}{R_{i}}\left(v_{o c}-V\right) V_{o c}
\end{align*}
$$

Part b

$$
\text { Defining } \quad \eta=\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{\mathrm{M}}}
$$

we have

$$
\begin{equation*}
\eta=\frac{\left(v_{o c}-v\right) v-a V^{2}}{\left(v_{o c}-v\right) v_{o c}} \tag{g}
\end{equation*}
$$

First, we wish to find what terminal voltage maximizes $P_{\text {out }}$. We take

$$
\begin{aligned}
& \frac{\partial P_{\text {out }}}{\partial V}=0 \text { and find that } \\
& V=\frac{V_{\text {oc }}}{2(1+a)} \text { maximizes } P_{\text {out }}
\end{aligned}
$$

For this value of V, η equals

$$
\eta=\frac{1}{2} \frac{1}{(1+2 a)}
$$

(h)

Plotting η vs. $\frac{1}{a}$ gives

PROBLEM 12.17(Continued)
Now, we wish to find what voltage will give maximum efficiency, so we take

$$
\frac{\partial \eta}{\partial v}=0
$$

Solving for the maximum, we obtain

$$
\begin{equation*}
V=v_{o c}\left[1 \pm \sqrt{\frac{a}{1+a}}\right] \tag{i}
\end{equation*}
$$

We choose the negative sign, since $V \leq V_{o c}$ for generator operation. We thus obtain

$$
\begin{equation*}
\eta=1+2 a-2 \sqrt{a(1+a)} \tag{j}
\end{equation*}
$$

Plotting η vs. $\frac{1}{a}$, we obtain

PROBLEM 12.18
From Fig. 12P.18, we have

$$
\bar{E}=\frac{v}{w} \bar{i}_{y}
$$

and

$$
\begin{equation*}
\bar{J}=\bar{i}_{y} \sigma\left[\frac{v}{w}+v B\right]=\frac{I}{L D} \bar{i}_{y} \tag{b}
\end{equation*}
$$

The z component of the force equation is

$$
\begin{align*}
& -\frac{\partial p}{\partial z}-\frac{I}{L D} B=0 \tag{c}\\
& \Delta p=p_{i}-p_{0}=\frac{I B}{D}=\Delta p_{0}\left(1-\frac{v}{v_{0}}\right) \tag{d}
\end{align*}
$$

or
Solving for v, we obtain

$$
v=\left(1-\frac{I B}{D \Delta p_{0}}\right) v_{0}
$$

(e)

PROBLEM 12.18 (Continued)

Thus, we have

$$
\begin{equation*}
\frac{I}{\mathrm{LD} \sigma}=\frac{\mathrm{V}}{\mathrm{w}}+\mathrm{B}\left(1-\frac{\mathrm{IB}}{\mathrm{D} \Delta \mathrm{p}_{\mathrm{o}}}\right) \mathrm{v}_{\mathrm{o}} \tag{f}
\end{equation*}
$$

or

$$
\begin{equation*}
V=I\left(\frac{w}{L D \sigma}+\frac{B^{2} v_{o} w}{D \Delta p_{o}}\right)-v_{o} B w \tag{g}
\end{equation*}
$$

Thus, for our equivalent circuit

$$
\begin{align*}
& R_{i}^{\prime}=\frac{w}{L D \sigma}+\frac{v_{0} w B^{2}}{D \Delta p_{o}} \tag{h}\\
& v_{o c}=-v_{o} w B \tag{i}
\end{align*}
$$

and

We notice that the current I in Fig. 12P.18b is not consistent with that of Fig. 12P.18a. It should be defined flowing in the other direction.

PROBLEM 12.19
Using Ampere's law

$$
\begin{equation*}
H_{0}=\frac{N_{0} I_{0}+N_{L} I_{L}}{d} \tag{a}
\end{equation*}
$$

Within the fluid

$$
\begin{equation*}
\bar{J}=\frac{I_{L}}{\ell d} \bar{i}_{z}=\sigma\left(-\frac{V_{L}}{w}+v \mu_{0} H_{o}\right) \bar{I}_{z} \tag{b}
\end{equation*}
$$

Simplifying, we obtain

$$
\begin{equation*}
I_{L}\left[\frac{1}{\ell d}-\frac{\sigma v \mu_{0} N_{L}}{d}\right]=\frac{\sigma v \mu_{o} N_{o} I_{o}}{d}-\frac{\sigma V_{L}}{w} \tag{c}
\end{equation*}
$$

For V_{L} to be independent of I_{L}, we must have

$$
\begin{equation*}
-\frac{\sigma v \mu_{0} N_{L}}{d}=\frac{1}{\ell d} \tag{d}
\end{equation*}
$$

or

$$
N_{L}=\frac{1}{\ell \sigma v \mu_{0}}
$$

(e)

PROBLEM 12.20
We define coordinate systems as shown below.

MHD \#2.

MHD \# 1

PROBLEM 12.20 (Continued)
Now, since $\nabla \cdot \bar{v}=0$, we have

$$
v_{1} w_{1} d_{1}=v_{2} w_{2} d_{2}
$$

In system (2),

$$
\begin{equation*}
\bar{J}_{2}=\bar{i}_{y_{2}} \frac{I_{2}}{\ell_{2} d_{2}}=-\sigma\left(\frac{v_{2}}{w_{2}}+v_{2} B\right) \bar{i}_{y_{2}} \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta p_{2}=p\left(0_{+}\right)-p\left(l_{2-}\right)=-\frac{I_{2} B}{d_{2}} \tag{b}
\end{equation*}
$$

In sy,stem (1),

$$
\begin{equation*}
\bar{J}_{1}=\bar{i}_{y_{1}} \frac{I_{1}}{\ell_{1}^{d}}=\sigma\left(\frac{V_{1}}{w_{1}}-v_{1} B\right) \tag{c}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta p_{1}=p\left(0_{+}\right)-p\left(\ell_{1-}\right)=-\frac{I_{1} B}{d_{1}} \tag{d}
\end{equation*}
$$

By applying Bernoulli's law at the points $x_{1}=0_{-}$(right before?"ID system 1) and at $x_{1}=\ell_{1+}$ (right after MHD system 1), we obtain

$$
\begin{equation*}
\frac{1}{2} \rho v_{1}^{2}+p_{1}\left(0_{-}\right)=\frac{1}{2} \rho v_{1}^{2}+p_{1}\left(\ell_{1+}\right) \tag{e}
\end{equation*}
$$

$$
\begin{equation*}
\text { or } \quad p_{1}\left(0_{-}\right)=p_{1}\left(\ell_{1+}\right) \tag{f}
\end{equation*}
$$

Similarly on MHD system (2):

$$
\begin{equation*}
p_{2}\left(0_{-}\right)=p_{2}\left(\ell_{2+}\right) \tag{g}
\end{equation*}
$$

Now,

$$
\oint_{C} \nabla p \cdot d \ell=0
$$

Applying this relation to a closed contour which follows the shape of the channel,

$$
=p_{1}\left(\ell_{1-}\right)-p_{1}\left(0_{+}\right)+p_{2}\left(0_{-}\right)-p_{1}\left(\ell_{1+}\right)+p_{2}\left(\ell_{2}\right)
$$

$$
\begin{equation*}
-p_{2}\left(0_{+}\right)+p_{1}\left(0_{-}\right)-p_{2}\left(\ell_{2}+\right) \tag{h}
\end{equation*}
$$

$$
\begin{align*}
& \text { we obtain } \\
& \text { From (f) and (g) we reduce this to } \\
& \Delta p_{1}+\Delta p_{2}=0 \tag{i}\\
& \text { or } \\
& \frac{I_{1}}{d_{1}}=\frac{-I_{2}}{d_{2}} \tag{j}
\end{align*}
$$

PROBLEM 12.20 (Continued)

Thus, we may express v_{1} as

$$
\begin{equation*}
v_{1}=\left(+\frac{I_{2}}{\ell_{1} d_{2} \sigma}+\frac{V_{1}}{w_{1}}\right) \frac{1}{B} \tag{k}
\end{equation*}
$$

We substitute this into our original equation for $J_{2} \quad$ (a), to obtain

$$
\frac{I_{2}}{\ell_{2} d_{2}}=-\sigma \frac{V_{2}}{W_{2}}-\sigma\left(\frac{W_{1} d_{1}}{W_{2} d_{2}}\right)\left(\frac{L_{2}}{\ell_{1} d_{2}}+\frac{V_{1}}{w}\right)
$$

This may be rewritten as

$$
\begin{equation*}
V_{2}=-I_{2} \frac{w_{2}}{\sigma}\left[\frac{1}{l_{2} d_{2}}+\frac{w_{1} d_{1}}{w_{2}^{l} d_{1}^{2}}\right]-\frac{d_{1}}{d_{2}} V_{1} \tag{m}
\end{equation*}
$$

The Thevenin equivalent circuit is:

where $\quad V_{o c}=\frac{d_{1}}{d_{2}} V_{1}$
and

$$
\mathrm{R}_{\mathrm{eq}}=\frac{\mathrm{w}_{2}}{\sigma \mathrm{~d}_{2}}\left[\frac{1}{l_{2}}+\frac{\mathrm{w}_{1} \mathrm{~d}_{1}}{\mathrm{w}_{2} \mathrm{~d}_{2} l_{1}}\right]
$$

PROBLEM 12.21

For the MHD system

$$
\begin{equation*}
|\bar{J}|=\frac{I}{L W}=\sigma\left(\frac{V_{0}}{D}-v \mu_{0} H_{o}\right) \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta p=p_{1}-p_{2}=+\frac{I_{\mu_{0}} H_{0}}{w} \tag{b}
\end{equation*}
$$

Now, since

$$
\oint \nabla_{\mathrm{p}} \cdot \mathrm{~d} \ell=0
$$

$$
\begin{gathered}
\text { cue } \\
\text { an }
\end{gathered}
$$

$$
\begin{equation*}
\Delta p=k v=\mu_{0} H_{o} L \sigma\left(\frac{V_{0}}{D}-v \mu_{0} H_{o}\right) \tag{d}
\end{equation*}
$$

Solving for v, we obtain

$$
\begin{equation*}
v=\frac{\mu_{0} H_{0} L \sigma V_{o}}{D\left[k+\left(\mu_{0} H_{0}\right)^{2} L \sigma\right]} \tag{e}
\end{equation*}
$$

PROBLEM 12.22

Part a
We assume that the fluid flows in the +x direction with velocity v.
Thus

$$
\begin{equation*}
\bar{J}=\bar{i}_{3} \frac{I}{L w}=\sigma\left(\frac{V}{d}+v \mu_{0} H_{0}\right) i_{3} \tag{a}
\end{equation*}
$$

where I is defined as flowing out of the positive terminal of the voltage source V_{0}. We write the x_{1} component of the force equation as

$$
\begin{equation*}
-\frac{\partial p_{1}}{\partial x_{2}}-\frac{I \mu_{0} H_{o}}{L w}-\rho g=0 \tag{b}
\end{equation*}
$$

Thus

$$
\begin{equation*}
p=-\left(\frac{I \mu_{o} H_{o}}{L w}+\rho g\right) x_{2} \tag{c}
\end{equation*}
$$

For $\Delta_{p}=p(0)-p(L)=0$
Then

$$
\begin{equation*}
\frac{I \mu_{o} H_{o}}{L w}=-\rho g \tag{d}
\end{equation*}
$$

For the external circuit shown,

$$
\begin{equation*}
V=-I R+V_{0} \tag{e}
\end{equation*}
$$

Solving for I we get

$$
\begin{equation*}
I=\frac{\frac{V_{0}}{d}+v \mu_{0} H_{o}}{\frac{1}{\sigma L W}+\frac{R}{d}}=-\frac{\rho g L w}{\mu_{0} H_{o}} \tag{f}
\end{equation*}
$$

Solving for the velocity, v, we get

$$
\begin{equation*}
v=\frac{-\frac{\rho g L w}{\mu_{0} H_{0}}\left(\frac{1}{\sigma L w}+\frac{R}{d}\right)-\frac{v_{0}}{d}}{\mu_{0} H_{0}} \tag{g}
\end{equation*}
$$

For $v>0$, then

$$
V_{0}<\frac{-\rho g}{\mu_{0} H_{0}}\left(\frac{d}{\sigma}+R L w\right)
$$

(h)

Part b
If the product $V_{0} I>0$, then we are supplying electrical power to the fluid. From part (a), (f) and (h), V_{0} is always negative, but so is I. So the product $\mathrm{V}_{\mathrm{o}} \mathrm{I}$ is positive.

PROBLEM 12.23

Since the electrodes are short-circuited,

$$
\begin{equation*}
\bar{J}=\bar{i}_{z} \frac{I}{\ell d}=\sigma v B_{o} \bar{i}_{z} \tag{a}
\end{equation*}
$$

In the upper reservoir

$$
\begin{equation*}
p_{1}=p_{o}+\rho g\left(h_{1}-y\right) \tag{b}
\end{equation*}
$$

while in the lower reservoir

$$
\begin{equation*}
p_{2}=p_{o}+\rho g\left(h_{2}-y\right) \tag{c}
\end{equation*}
$$

The pressure drop within the MHD system is

$$
\begin{equation*}
\Delta p=p(0)-p(\ell)=\frac{I B}{d} \tag{d}
\end{equation*}
$$

Integrating along the closed contour from $y=h_{1}$ through the duct to $y=h_{2}$, and then back to $y=h_{1}$ we obtain

Thus

$$
\begin{equation*}
-\oint_{C} \nabla p \cdot d l=0=-\rho g\left(h_{1}-h_{2}\right)+\frac{I B}{d} \ell \tag{e}
\end{equation*}
$$

$$
\begin{equation*}
I=\frac{\rho g\left(h_{1}-h_{2}\right) d}{B l} \tag{f}
\end{equation*}
$$

and so

$$
\begin{equation*}
v=\frac{I}{\sigma \ell d B_{o}}=\frac{\rho g\left(h_{1}-h_{2}\right)}{\sigma \ell^{2} B_{o}} \tag{g}
\end{equation*}
$$

PROBLEM 12.24

Part a

We define the velocity v_{h} as the velocity of the fluid at the top interface, where

$$
\begin{equation*}
v_{h}=-\frac{d h}{d t} \tag{a}
\end{equation*}
$$

Since $\nabla \cdot v=0$, we have

$$
\begin{equation*}
v_{h} A=v_{e} w D \tag{b}
\end{equation*}
$$

where v_{e} is the velocity of flow through the MHD generator (assumed constant). We assume that accelerations of the fluid are negligible. When we obtain the solution, we must check that these approximations are reasonable. With these approximations, the pressure in the storage tank is

$$
\begin{equation*}
p=-\rho g(y-h)+p_{o} \tag{c}
\end{equation*}
$$

where p_{0} is the atmospheric pressure and y the vertical coordinate. The pressure drop in the MHD generator is

$$
\begin{equation*}
\Delta \mathrm{p}=\frac{\mathrm{I} \mu_{\mathrm{o}} \mathrm{H}_{\mathrm{o}}}{\mathrm{D}} \tag{d}
\end{equation*}
$$

where I is defined positive flowing from right to left within the generator in the end view of Fig. 12P. 24.

PROBLEM 12.24 (continued)
We have also assumed that within the generator, v_{e} does not vary with position. The current within the generator is

$$
\frac{I}{L_{0} D}=\sigma\left(-\frac{I R}{w}+v_{e} \mu_{0} H_{o}\right)
$$

(e)

Now, since $\oint \nabla \mathrm{p} \cdot \mathrm{d} \ell=0$, we have

$$
\begin{equation*}
\Delta p-\rho g h=0 \tag{g}
\end{equation*}
$$

Thus, using (d), (f) and (g), we obtain

$$
\begin{equation*}
-\rho g h+\frac{\left(\mu_{0} H_{o}\right)^{2}}{D}\left[\frac{1}{\frac{R}{\dot{w}}+\frac{1}{\sigma L_{o} D}}\right] v_{e}=0 \tag{h}
\end{equation*}
$$

Using (b), we finally obtain

$$
\begin{equation*}
\frac{d h}{d t}+s h=0 \tag{i}
\end{equation*}
$$

where

$$
s=\frac{\rho g w_{0}}{\left(\mu_{0} H_{o}\right)^{2}} \frac{D}{A}\left[\frac{R D}{W}+\frac{1}{\sigma L_{o}}\right]
$$

Thus

$$
\begin{equation*}
h=10 e^{-s t} \text {, until time } \tau \text {, when the valve closes } \tag{j}
\end{equation*}
$$

Numerically

$$
s=7.1 \times 10^{-3}, \text { thus } \tau \approx 100 \text { seconds }
$$

For our approximations to be valid, we must have

$$
\begin{equation*}
\left|\rho \frac{\partial v_{h}}{\partial t}\right| \ll \quad \rho g \tag{k}
\end{equation*}
$$

or

$$
s^{2} h \ll g .
$$

Also, we must have

$$
\left|\frac{1}{2} \rho v_{h}^{2}\right| \ll|\rho g h|
$$

or

$$
\begin{equation*}
\frac{1}{2} \quad s^{2} h \ll g \tag{l}
\end{equation*}
$$

Our other approximation was

$$
\begin{equation*}
\left|\rho L_{o} \frac{\partial v_{e}}{\partial t}\right| \ll\left|\frac{I \mu_{o} H_{o} \mid}{D}\right| \tag{m}
\end{equation*}
$$

which implies from (f) that

PROBLEM 12.24 (continued)

$$
\rho s L_{o} \ll \frac{\left(\mu_{0} H_{0}\right)^{2}}{D\left[\frac{R}{W}+\frac{1}{\sigma L_{o} D}\right]}
$$

(n)

Substituting numerical values, we see that our approximations are all reasonable. Part b

From (b) and (f)
$\left.I=\frac{\mu_{0} H_{0} A}{w d\left[\frac{1}{\sigma L} \frac{R}{w}\right.}\right]^{\frac{R}{\partial t}}$
$=-650 \times 10^{3} \mathrm{e}^{-s t}$ amperes.
until $t=100$ seconds, where $I=-325 \times 10^{3}$ amperes. Once the valve is closed, $I=0$.

FLECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.25

$\underline{\text { Part } a}$

Within the MHD system

$$
\begin{equation*}
\bar{J}=\frac{-i}{L_{1} D} \bar{i}_{3}=-\sigma\left(\frac{V}{w}-\mu_{i \mu} H_{0}\right) \bar{i}_{3} \text { where } V=-i R+V_{0} \tag{a}
\end{equation*}
$$

and $\quad \Delta p=p(0)-p\left(-L_{1}\right)=\frac{i \mu{ }_{0} H_{0}}{D}$
We are considering static conditions $(v=0)$ so the pressure in tank 1 is

$$
\begin{equation*}
p_{1}=-\rho g\left(x_{2}-h_{1}\right)+p_{0} \tag{c}
\end{equation*}
$$

and in tank 2 is

$$
\begin{equation*}
p_{2}=-\rho g\left(x_{2}-h_{2}\right)+p_{o} \tag{d}
\end{equation*}
$$

where p_{0} is the atmospheric pressure,
thus

$$
\begin{equation*}
i=\frac{v_{o}}{w\left[\frac{1}{\sigma L_{1} D}+\frac{R}{w}\right]} \tag{e}
\end{equation*}
$$

Now since $\oint \delta \mathrm{p} \cdot \mathrm{d} \ell=0$, we must have

$$
\begin{equation*}
+\mathrm{C}^{\mathrm{J}} \mathrm{gh}_{1}+\frac{i \mu_{\mathrm{O}} \mathrm{H}_{\mathrm{O}}}{\mathrm{D}}-\rho g h_{2}=0 \tag{f}
\end{equation*}
$$

Solving in terms of V_{o} we obtain.

$$
\begin{equation*}
v_{0}=\frac{\rho g\left(h_{2}-h_{1}\right) w D}{\left(\mu_{0} H_{0}\right)}\left(\frac{1}{\sigma L_{1} D}+\frac{R}{w}\right) \tag{g}
\end{equation*}
$$

For $h_{2}=.5$ and $h_{1}=.4$ and substituting for the given values of the parameters, we obtain

$$
v_{0}=6.3 \text { millivolts }
$$

Under these static conditions, the current delivered is

$$
i=\frac{\rho g\left(h_{2}-h_{1}\right) D}{\mu_{0} H_{0}}=210 \text { amperes }
$$

and the power
delivered is

$$
P_{e}=v_{o} i=\left[\frac{\rho g\left(h_{2}-h_{1}\right) D}{\mu_{0} H_{0}}\right]^{2} w\left[\frac{1}{\sigma L_{1} D}+\frac{R}{w}\right]=1.33 \text { watts }
$$

Part b

We expand h_{1} and h_{2} around their equilibrium values h_{10} and h_{20} to obtain

$$
\begin{aligned}
& h_{1}=h_{10}+\Delta h_{1} \\
& h_{2}=h_{20}+\Delta h_{2}
\end{aligned}
$$

PROBLEM 12.25 (Continued)

Since the total volume of the fluid remains constant

$$
\Delta h_{2}=-\Delta h_{1}
$$

Since we are neglecting the acceleration in the storage tanks, we may still write

$$
\begin{align*}
& p_{1}=-\rho g\left(x_{2}-h_{1}\right)+p_{0} \tag{h}\\
& p_{2}=-\rho g\left(x_{2}-h_{2}\right)+p_{0}
\end{align*}
$$

Within the MHD section, the force equation is

$$
\begin{equation*}
\rho \frac{\partial v}{\partial t}=-\nabla p_{M H D}+\frac{i \mu_{0} H_{0}}{L_{1} D} \tag{i}
\end{equation*}
$$

Integrating with respect to x_{1}, we obtain

$$
\begin{equation*}
\Delta p_{M H D}=p(0)-p(-L)=\frac{i \mu_{0} H_{o}}{L_{1} D}-\rho L_{1} \frac{\partial v}{\partial t} \tag{j}
\end{equation*}
$$

The pressure drop over the rest of the pipe is

$$
\Delta p_{\text {pipe }}=-L_{2} \rho \frac{d v}{d t}
$$

Again, since $\oint_{C} \nabla \mathrm{p} \cdot \mathrm{d} \ell=0$, we have

$$
\begin{equation*}
\rho g\left(h_{1}-h_{2}\right)+\Delta p_{M H D}+\Delta p_{\text {pipe }}=0 \tag{k}
\end{equation*}
$$

For $t>0$ we have

$$
i=\frac{\frac{2 V_{o}}{w}-v \mu_{0} H_{o}}{\frac{1}{\sigma L_{1} D}+\frac{R}{w}}
$$

and substituting into the above equation, we obtain

$$
\begin{equation*}
\rho g\left(h_{1}-h_{2}\right)-\rho\left(L_{1}+L_{2}\right) \frac{\partial v}{\partial t}+\frac{\left(\frac{2 V_{o}}{w}-v \mu_{o} H_{0}\right)}{\left[\frac{1}{\sigma L_{1} D}+\frac{R}{w}\right]} \frac{\mu_{o} H_{0}}{D}=0 \tag{m}
\end{equation*}
$$

We desire an equation just in Δh_{2}. From the $\nabla \cdot v=0$, we obtain

$$
\begin{equation*}
\mathrm{vwD}=\frac{\mathrm{d} \Delta \mathrm{~h}_{2}}{\mathrm{dt}} \mathrm{~A} \tag{n}
\end{equation*}
$$

ilaking these substitutions, the resultant equation of motion is

$$
\begin{align*}
& \frac{d^{2} \Delta h_{2}}{d t^{2}}+\frac{\left(\mu_{0} H_{0}\right)^{2}}{\rho\left(L_{1}+L_{2}\right) D\left[\frac{1}{\sigma L_{1} D}+\frac{R}{w}\right]} \frac{d \Delta h_{2}}{d t}+\frac{2 g w d \Delta h_{2}}{\left(L_{1}+L_{2}\right) A} \\
&=\frac{V_{0} \mu_{0} H_{o}}{\rho\left(L_{1}+L_{2}\right) A\left[\frac{1}{\sigma L_{1} D}+\frac{R}{w}\right]} \tag{o}
\end{align*}
$$

PROBLEM 12.25 (continued)

Solving, we obtain

$$
\begin{equation*}
\Delta h_{2}=\frac{V_{0} \mu_{0} H_{0}}{2 \rho g w d\left(\frac{1}{\sigma L_{1} D}+\frac{R}{w}\right)}+B_{1} e^{s_{1} t}+B_{2} e^{s_{2} t} \tag{p}
\end{equation*}
$$

where B_{1} and B_{2} are arbitrary constants to be determined by initial conditions and

$$
s_{\frac{1}{2}}=-\frac{\left[\left(\mu_{0} H_{0}\right)^{2}\right]}{\left.\left.2 \rho\left(L_{1}+L_{2}\right)\right]\right)\left(\frac{1}{\sigma L}+\frac{R}{w}\right)} \pm \sqrt{\left(\frac{\left[\mu_{0} H_{0}\right]^{2}}{2 \rho\left[L_{1}+L_{2}\right] D\left[\frac{1}{\sigma L_{1} D}+\frac{R}{w}\right.}\right)^{2}-\frac{2 g w d}{\left(L_{1}+L_{2}\right) A}}
$$

Substituting values, we obtain approximately

$$
\begin{aligned}
& s_{1}=-.025 \sec ^{-1} \\
& s_{2}=-.94 \sec ^{-1}
\end{aligned}
$$

The initial conditions are

$$
\Delta h_{2}(t=0)=0
$$

and

$$
\frac{d \Delta h_{2}(t=0)}{d t}=0
$$

Thus, solving for B_{1} and B_{2} we have

$$
\begin{align*}
& -\frac{V_{0} \mu_{0} H_{o}}{B_{1}}=\frac{-V_{0} \mu_{0} H_{0}}{2 \rho g w D\left[\frac{1}{\sigma L_{1} D}+\frac{R}{W}\right]\left(1-\frac{s_{1}}{s_{2}}\right)}=-.051 \\
B_{2} & =\frac{-s_{0}}{2 \rho g w D\left[\frac{1}{\sigma L_{1} D}+\frac{R}{w}\right]\left(1-\frac{s_{2}}{s_{1}}\right)}=+1.36 \times 10^{-3} \tag{r}
\end{align*}
$$

Thus

$$
\begin{equation*}
h_{2}(t)=h_{20}+\Delta h_{2}(t)=.55+1.36 \times 10^{-3} e^{-.94 t}-.051 e^{-.025 t} \tag{s}
\end{equation*}
$$

From (l) we have

$$
\begin{equation*}
i=\frac{\frac{2 V_{0}}{w}-v \mu_{o} H_{o}}{\frac{R}{w}+\frac{1}{\sigma L_{1} D}} \tag{t}
\end{equation*}
$$

Substituting numerical values, we obtain

$$
\begin{align*}
i & =420-2.08 \times 10^{5}\left(B_{1} s_{1} e^{s_{1} t}+B_{2} s_{2} e^{s_{2} t}\right) \\
& =420-268\left(e^{-.025 t}-e^{-.94 t}\right) \tag{u}
\end{align*}
$$

PROBLEM 12.25 (continued)
Our approximations were made in (h) and (k.). For them. to be valid, the following relations must hold:

$$
\frac{\frac{\partial^{2} \Delta h_{2}}{\partial t^{2}}}{g h_{2}} \ll 1
$$

and

$$
\int_{\substack{\text { transition } \\ \text { region }}} \frac{\partial \bar{v}}{\partial t}+(\bar{v} \cdot \nabla) \bar{v} d s \quad \approx \frac{\partial \bar{v}}{\partial t} \sqrt{A} \ll L_{2} \frac{\partial \bar{v}}{\partial t}
$$

Substituting values, we find the first ratio to be about . 001 , so there our approximation is good to about $.1 \%$. In the second approximation

$$
\frac{\sqrt{\mathrm{A}}}{\mathrm{~L}_{2}} \approx \frac{.3}{2} \approx .15
$$

Here, our approximation is good only to about 15%, which provides us with an idea of the error inherent in the approximation.

PROBLEM 12.26
Part a
We use the same coordinate system as defined in Fig. 12P.25. The magnetic field through the pump is

$$
\begin{equation*}
\bar{B}=\frac{N i \mu_{0}}{d} \bar{i}_{2} \tag{a}
\end{equation*}
$$

We integrate Newton's law across the length \& to obtain

$$
\begin{aligned}
\rho \ell \frac{\partial v}{\partial t} & =p(0)-p(\ell)+J B \ell=-\frac{\Delta p_{o}}{v_{o}} v+\frac{i}{d} B \\
& =-\frac{\Delta p_{o}}{v_{o}} v+\frac{N \mu_{o}}{d^{2}} i^{2}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\frac{\partial v}{\partial t}+\frac{\Delta p_{o}}{\rho \ell v_{0}} v=\frac{N \mu_{0}}{d^{2} \rho \ell} I^{2} \sin ^{2} \omega t=\frac{N \mu_{0}}{2 d^{2} \rho \ell} I^{2}(1-\cos 2 \omega t) \tag{c}
\end{equation*}
$$

Solving, we obtain

$$
\left.\begin{array}{l}
v=\frac{N \mu_{o} I^{2}}{2 d^{2} \rho \ell}\left[\frac{v_{o} \rho \ell}{\Delta p_{o}}-\frac{\left(\frac{\Delta p_{o}}{\rho \ell v_{0}} \cos 2 \omega t+2 \omega \sin 2 \omega t\right)}{\left(\frac{\Delta p_{o}}{\rho \ell v_{0}}\right)^{2}+4 \omega^{2}}\right] \tag{d}
\end{array}\right]
$$

$$
\text { ratio } R \text { of ac to dc velocity components is: }
$$

$R=\frac{\Delta p_{o} / v_{0} \rho l}{\left[\left(\frac{\Delta p_{0}}{v_{0} \rho \ell}\right)^{2}+4 \omega^{2}\right]^{1 / 2}}$

PROBLEM 12.27

Part a

The magnetic field in generator (1) is upward, with magnitude

$$
\begin{equation*}
B_{1}=\frac{N_{1} \mu_{0}}{a}-\frac{N_{m_{2}} \mu_{0}}{a} \tag{a}
\end{equation*}
$$

and in generator (2) upward with magnitude

$$
\begin{equation*}
B_{2}=\frac{\mathrm{N}_{\mathrm{m}} \mathrm{i}_{1} \mu_{0}}{\mathrm{a}}+\frac{\mathrm{Ni}_{2} \mu_{0}}{\mathrm{a}} \tag{b}
\end{equation*}
$$

We define the voltages V_{1} and V_{2} across the terminals of the generators.
Applying Kirchoff's voltage law around the loops of wire with currents i_{1} and i_{2} we have

$$
\begin{equation*}
V_{1}+N \frac{d \lambda_{1}}{d t}+N_{m} \frac{d \lambda_{2}}{d t}+i_{1} R_{L}=0 \tag{c}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{2}+N \frac{d \lambda_{2}}{d t}-N_{m} \frac{d \lambda_{1}}{d t}+i_{2} R_{L}=0 \tag{d}
\end{equation*}
$$

where

$$
\begin{align*}
& \lambda_{1}=\mathrm{B}_{1} \mathrm{wb} \tag{e}\\
& \lambda_{2}=\mathrm{B}_{2} \mathrm{wb}
\end{align*}
$$

From conservation of current we have
and $\begin{aligned} \frac{\mathrm{i}_{1}}{\mathrm{ab} \sigma} & =\frac{\mathrm{V}_{1}}{\mathrm{w}}+\mathrm{VB}_{1} \\ \frac{\mathrm{I}_{2}}{\mathrm{ab} \mathrm{\sigma}} & =\frac{\mathrm{V}_{2}}{\mathrm{w}}+\mathrm{VB}_{2}\end{aligned}$
Combining these relations, we obtain

$$
\begin{equation*}
\left(N^{2}+N_{m}^{2}\right) \frac{w b \mu_{o}}{a} \frac{d i_{1}}{d t}+i_{1}\left[\frac{w}{a b \sigma}+R_{L}-\frac{w \mu_{0} N V}{a}\right]+\frac{\mu_{o} w}{a} V N_{m} i_{2}=0 \tag{h}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(N^{2}+N_{m}^{2}\right) \frac{w b \mu_{0}}{a} \frac{d i_{2}}{d t}+i_{2}\left[\frac{w}{a b \sigma}+R_{L}-\frac{V N \mu_{0} w}{a}\right]-\frac{N_{m} \mu_{0}}{a} w V i_{2}=0 \tag{i}
\end{equation*}
$$

Part b
We combine these two first-order differential equations to obtain one secondorder equation.

$$
\begin{equation*}
a_{1} \frac{d^{2} i_{2}}{d t}+a_{2} \frac{d i_{2}}{d t}+a_{3} i_{2}=0 \tag{j}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{1}=\frac{\left[\left(N^{2}+N_{m}^{2}\right) \frac{w b{ }_{o}}{a}\right]^{2}}{\frac{w N_{m} V \mu_{o}}{a}} \tag{k}
\end{equation*}
$$

PROBLEM 12.27 (continued)

$$
\begin{aligned}
& a_{2}=2\left[\frac{w}{a b \sigma}+R_{L}-\frac{w \mu_{0} N V}{a}\right]\left[\frac{\left(N^{2}+N_{m}^{2}\right) b}{N_{m} V}\right] \\
& a_{3}=\frac{N_{m} \mu_{0} w}{a}
\end{aligned}
$$

If we assume solutions of the form

$$
i_{2}=A e^{s t}
$$

Then we must have

$$
\begin{equation*}
a_{1} s^{2}+a_{2} s+a_{3}=0 \tag{m}
\end{equation*}
$$

or

$$
s=\frac{-a_{2} \pm \sqrt{a_{2}^{2}-4 a_{1} a_{3}}}{2 a_{1}}
$$

For the generators to be stable, the real part of s must be negative.
Thus
$a_{2}>0$ for stability
which implies the condition for stability is
$\underline{\text { Part } c} \frac{w}{a b \sigma}+R_{L}>\frac{w \mu_{0} N V}{a}$
When $a_{2}=0$

$$
\begin{equation*}
\frac{w}{a b \sigma}+R_{L}=\frac{w \mu_{0} N v}{a} \tag{o}
\end{equation*}
$$

then s is purely imaginary, so the system will operate in the sinusoidal steady state.
Then

$$
\begin{aligned}
s & = \pm j \sqrt{\frac{a_{s}}{a_{1}}} \\
& = \pm j \frac{N_{m} v}{b\left(N^{2}+N_{m}^{2}\right)}
\end{aligned}
$$

The length b necessary for sinusoidal operation is

$$
\begin{equation*}
b=\frac{w}{a \sigma\left[\frac{w \mu_{0} N v}{a}-R_{L}\right]} \tag{q}
\end{equation*}
$$

Substituting values, we obtain
$b=4$ meters.
Part d
Thus, the frequency of operation is

$$
\begin{aligned}
\omega & =\frac{4000}{8}=500 \mathrm{rad} / \mathrm{sec} . \\
\text { or } \quad \mathbf{f} & =\frac{\omega}{2 \pi} \approx 80 \mathrm{~Hz} .
\end{aligned}
$$

PROBLEM 12.28
Part a
The magnetic field within the generator is

$$
\begin{equation*}
\bar{B}=\frac{\mu_{0} N i}{w} \bar{I}_{2} \tag{a}
\end{equation*}
$$

The current through the generator is

$$
\begin{equation*}
\bar{J}=\overline{\bar{i}}_{3} \frac{i}{\ell w}=\sigma\left(\frac{v}{D}+V B\right) \bar{i}, \tag{b}
\end{equation*}
$$

Solving for v, the voltage across the channel, we obtain

$$
\begin{equation*}
v=\left(\frac{D}{\sigma l w}-\frac{V \mu_{o} N}{w} D\right)_{i} \tag{c}
\end{equation*}
$$

We apply Faraday's law around the electrical circuit to obtain

$$
\begin{equation*}
v+\frac{1}{C} \int i d t+i R_{L}=-\frac{\mu_{0} N^{2}}{w} \ell d \frac{d i}{d t} \tag{d}
\end{equation*}
$$

Differentiating and simplifying this equation we finally obtain

$$
\begin{equation*}
\frac{d^{2} i}{d t^{2}}+\left(\frac{R_{L} w}{\mu_{0} N^{2} \ell d}+\frac{D}{\sigma L w}-\frac{\mu_{0} N D V}{w}\right) \frac{d i}{d t}+\frac{w}{\mu_{0} N^{2} \ell d C} \quad i=0 \tag{e}
\end{equation*}
$$

We assume that $i=\operatorname{Re} \hat{I} e^{s t}$.
Substituting this assumed solution back into the differential equation, we obtain

$$
\begin{equation*}
s^{2}+\left(\frac{R_{L} w}{\mu_{0} N^{2} \ell d}+\frac{D}{\sigma L w}-\frac{\mu_{0} N D V}{w}\right) s+\frac{w}{\mu_{0} N^{2} \ell d C}=0 \tag{f}
\end{equation*}
$$

Solving, we have

$$
\begin{equation*}
s=-\frac{\left(\frac{R_{L} w}{\mu_{0} N^{2} \ell d}+\frac{D}{\sigma L w}-\frac{\mu_{0} N D V}{w}\right)}{2} \pm \sqrt{\frac{\left(\frac{R_{L} w}{\mu_{0} N^{2} \ell d}+\frac{D}{\sigma L w}-\frac{\mu_{0} N D V}{w}\right)^{2}}{4}-\frac{w}{\mu_{0} N^{2} \ell d C}} \tag{g}
\end{equation*}
$$

For the device to be a pure ac generator, we must have that s is purely imaginary, or

$$
\begin{equation*}
R_{L}=\left(\frac{\mu_{0} N D V}{w}-\frac{D}{\sigma L w}\right) \frac{\mu_{0} N^{2} \ell d}{w} \tag{h}
\end{equation*}
$$

Part b
The frequency of operation is then

$$
\begin{equation*}
\omega=\frac{\omega}{\mu_{0} N^{2} \ell d C} \tag{i}
\end{equation*}
$$

PRGBLEM 12.29
Part a
The current within the MHD generator is

$$
\begin{equation*}
\bar{J}=\frac{i}{\ell d} \bar{i}_{y}=\sigma\left(\frac{v}{w}+v B_{o}\right) \bar{i}_{y} \tag{a}
\end{equation*}
$$

PROBLEM 12.29 (continued)

where V is the voltage across the channel. The pressure drop along the channel is

$$
\begin{equation*}
\Delta p=p_{1}-p_{0}=\frac{i B_{o}}{d}+\rho \frac{\partial v}{\partial t} \ell \tag{b}
\end{equation*}
$$

where we assume that v does not vary with distance along the channel. With the switch open, we apply Faraday's law around the circuit, for which we obtain

$$
\begin{equation*}
V+2 i R=0 \tag{c}
\end{equation*}
$$

Since the pressure drop is maintained constant, we solve for v to obtain

$$
\begin{equation*}
\left(\frac{2 \sigma R}{w}+\frac{1}{\ell d}\right) \frac{\rho d \ell}{B_{o}} \frac{\partial v}{\partial t}+\sigma v B_{o}=\left(\frac{1}{\ell d}+\frac{2 \sigma R}{w}\right) \frac{d}{B_{o}} \Delta p \tag{d}
\end{equation*}
$$

In the steady state

$$
\begin{equation*}
v=\left(\frac{1}{\sigma l d}+\frac{2 R}{\mathrm{w}}\right) \frac{\mathrm{d}}{\mathrm{~B}_{\mathrm{o}}^{2}} \Delta \mathrm{p} \tag{e}
\end{equation*}
$$

and

$$
\begin{equation*}
i=\frac{d}{B_{0}} \Delta p \tag{f}
\end{equation*}
$$

Part b
For $t>0$, the differential equation for v is

$$
\begin{equation*}
\left(\frac{\sigma R}{w}+\frac{1}{\ell d}\right) \frac{\rho \ell d}{B_{o}} \frac{\partial v}{\partial t}+\sigma v B_{o}=\left(\frac{1}{\ell d}+\frac{\sigma R}{w}\right) \frac{d}{B_{o}} \Delta p \tag{g}
\end{equation*}
$$

The general solution for v is

$$
\begin{equation*}
v=\left(\frac{1}{\sigma l d}+\frac{R}{w}\right) \frac{d}{B_{0}^{2}} \Delta p+A e^{-t / \tau} \tag{h}
\end{equation*}
$$

where $\quad \tau=\left(\frac{\sigma \mathrm{R}}{\mathrm{w}}+\frac{1}{\ell \mathrm{~d}}\right) \frac{\ell \mathrm{d}}{\sigma \mathrm{B}_{\mathrm{o}}{ }^{2}}$
We evaluate A by realizing that at $t=0$, the velocity must be continuous.
Therefore

$$
\begin{equation*}
v=\left(\frac{1}{\sigma l d}+\frac{R}{w}\right) \frac{d}{B_{o}^{2}} \Delta p+\frac{R}{w} \frac{d}{B_{o}^{2}} \Delta p e^{-t / \tau} \tag{i}
\end{equation*}
$$

and

$$
\begin{align*}
i & =\Delta p\left(1+\frac{\rho \ell}{\tau} \frac{R}{w} \frac{d}{B_{o}^{2}} e^{-t / \tau}\right) \frac{d}{B_{o}} \tag{j}\\
& =\Delta p\left(1+\frac{R \sigma e^{-t / \tau}}{w\left[\frac{\sigma R}{W}+\frac{1}{\ell d}\right]}\right) \frac{d}{B_{o}}
\end{align*}
$$

PROBLEM 12.30

Part a

The magnetic field in the generator is

$$
\begin{equation*}
\mathrm{B}=\frac{\mu_{\mathrm{o}} \mathrm{Ni}}{\mathrm{~d}} \tag{a}
\end{equation*}
$$

The current within the generator is

$$
\begin{equation*}
\frac{i}{\ell d}=\sigma\left(\frac{v}{w}+v B\right) \tag{b}
\end{equation*}
$$

PROBLEM 12.30 (continued)

where V is the voltage across the channel. The pressure drop in the channel is

$$
\begin{equation*}
\Delta p=p_{i}-p_{o}=\Delta p_{0}\left(1-\frac{v}{v_{0}}\right)=\frac{i B}{d} \tag{c}
\end{equation*}
$$

Applying Faraday's law around the external circuit, we obtain

$$
\begin{equation*}
V+i\left(R_{L}+R_{C}\right)=-\frac{d(N B \ell w)}{d t}=-\frac{\ell w}{d} \mu_{0} N^{2} \frac{d i}{d t} \tag{d}
\end{equation*}
$$

Using (a), (b), (c) and (d), the differential equation for i is then

$$
\begin{equation*}
\frac{\ell \mu_{0} N^{2}}{d} \frac{d i}{d t}+i\left[\frac{R_{L}+R_{C}}{w}+\frac{1}{\sigma l d}-\frac{\mu_{0} N}{d} v_{0}\right]+\frac{\left(\frac{\mu_{0} N}{d}\right)^{2}}{d \Delta p_{0}} v_{0} i^{3}=0 \tag{e}
\end{equation*}
$$

In the steady state, we have

$$
\begin{equation*}
i^{2}=-\frac{\left[\frac{R_{L}+R_{C}}{w}+\frac{1}{\sigma \ell d}-\frac{\mu_{0}^{N v_{o}}}{d}\right] d \Delta p_{o}}{\left[\frac{\mu_{0} N}{d}\right]^{2} v_{0}} \tag{f}
\end{equation*}
$$

The power dissipated in R_{L} is

$$
P=i^{2} R_{L}
$$

For $P=1.5 \times 10^{6}$, then

$$
i^{2}=.6 \times 10^{8} \text { (amperes) }^{2}
$$

Substituting in values for the parameters in (f), we obtain
$i^{2}=.6 \times 10^{8}=-\frac{\left(.125+2.5 \times 10^{-6} \mathrm{~N}^{2}-6.3 \times 10^{-4} \mathrm{~N}\right) 40 \times 10^{3}}{\mathrm{~N}^{2}\left(4 \times 10^{-8}\right)}$
Rearranging (g), we obtain

$$
N^{2}-102 N+2.04 \times 10^{3}=0
$$

or

$$
N=75,27
$$

The most efficient solution is that one which dissipates the least power in the coil's resistance. Thus, we choose

$$
N=27
$$

Part b
Substituting numerical values into (e), using $N=27$, we obtain
$\left(1.27 \times 10^{7}\right) \frac{d i}{d t}-\left(6 \times 10^{7}\right) i+i^{3}=0$
or, rewriting, we have

$$
\begin{equation*}
\frac{d t}{1.27 \times 10^{\top}}=\frac{d i}{i\left(6 \times 10^{7}-i^{2}\right)} \tag{i}
\end{equation*}
$$

Integrating, we obtain

$$
\begin{equation*}
9.4 t+C=\log \left(\frac{i^{2}}{6 \times 10^{7}-i^{2}}\right) \tag{j}
\end{equation*}
$$

We evaluate the arbitrary constant C by realizing that at $t=0, i=10 \mathrm{amps}$

PROBLEM 12.30 (continued)
Thus

$$
c=-13.3
$$

We take the anti-log of both sides of (j), and solve for i^{2} to obtain

$$
\begin{equation*}
i^{2}=\frac{6 \times 10^{7}}{\left.1+e^{(13.3-9.4} t\right)} \tag{k}
\end{equation*}
$$

Part c
For $N=27$, in the steady state, we use (f) to write

$$
P=i^{2} R_{L}=\frac{-\left[\frac{R_{L}+R_{C}}{w}+\frac{1}{\sigma \ell d}-\frac{\mu_{0} N_{o}}{d}\right] d \Delta p_{o} R_{L}}{\left(\frac{\mu_{0}}{d}\right)^{2} v_{o}}
$$

or
where
and

$$
\begin{aligned}
& P=a_{1} R_{L}-a_{2} R_{L}{ }^{2} \\
& a_{1}=-\frac{d \Delta p_{0}\left(\frac{R_{C}}{w}+\frac{1}{\sigma l d}-\frac{\mu_{0} N v_{0}}{d}\right)}{\left(\frac{\mu_{0}^{N}}{d}\right)^{2} v_{0}} \approx 1.47 \times 10^{8}
\end{aligned}
$$

$$
a_{2}=\frac{d \Delta p_{o}}{\left(\frac{\mu_{0}^{N}}{d}\right)^{2} v_{0}} \not \approx \frac{1}{2.85 \times 10^{-10}}
$$

PROBLEM 12.30 (continued)

PROBLEM 12.31

Part a

With the switch open, the current through the generator is

$$
\begin{equation*}
\bar{J}=0=\frac{i}{l d} \bar{i}_{y}=\sigma\left(-\frac{v}{w}+v B_{o}\right) \bar{i}_{y} \tag{a}
\end{equation*}
$$

where V is the voltage across the channel. In the steady state, the pressure drop in the channel is

$$
\begin{equation*}
\Delta p=p_{i}-p_{0}=\frac{i B}{d}=0=\Delta p_{0}\left(1-\frac{v}{v_{0}}\right) \tag{b}
\end{equation*}
$$

Thus, $v=v_{0}$ and the voltage across the channel is

$$
\begin{equation*}
v=v_{o} B_{o} w . \tag{c}
\end{equation*}
$$

Part b
With the switch closed, applying Faraday's law around the circuit we obtain $\mathrm{V}=\mathrm{i} \mathrm{R}_{\mathrm{L}}$
Thus

$$
\begin{equation*}
\frac{i}{\ell d}=-\frac{\sigma R_{L}}{w} i+\sigma v B_{o} \tag{d}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta p=\frac{i B}{d}+\rho \frac{\partial v}{\partial t} \ell=\Delta p_{o}\left(1-\frac{v}{v_{0}}\right) \tag{e}
\end{equation*}
$$

Obtaining an equation in v, we have

$$
\begin{equation*}
\rho \ell \frac{\partial v}{\partial t}+v\left[\frac{\Delta p_{o}}{v_{o}}+\frac{\sigma B_{o}}{\frac{1}{\ell d}+\frac{\sigma R_{L}}{w}}\right]=\Delta \mathrm{P}_{0} \tag{g}
\end{equation*}
$$

PROBLEM 12.31 (continued)

Solving for v we obtain

$$
\begin{equation*}
v=A e^{-t / \tau}+\frac{\Delta p_{0}}{\left(\frac{\Delta p_{0}}{v_{0}}+\frac{B_{0} w}{R_{L}+R_{i}}\right)} \quad \text { where } R_{i}=\frac{w}{\sigma \ell d} \tag{h}
\end{equation*}
$$

and where

$$
\tau=\frac{\rho \ell}{\left[\frac{\Delta p_{0}}{v_{0}}+\frac{w B_{0}}{R_{L}+R_{i}}\right]}
$$

(i)
at $t=0$, the velocity must be continuous. Therefore,

$$
A=v_{0}-\frac{\Delta p_{o}}{\left(\frac{\Delta p_{o}}{v_{0}}+\frac{w B_{o}}{R_{L}+R_{i}}\right)}
$$

Now, the current is

$$
\begin{equation*}
i=\frac{w B_{o} v}{R_{L}+R_{i}} \tag{k}
\end{equation*}
$$

Thus

$$
i=\left(\frac{w B_{0}}{R_{L} R_{i}}\right)\left[\frac{\Delta p_{0}}{\left(\frac{\Delta p_{0}}{v_{0}}+\frac{w B_{0}}{R_{L}+R_{i}}\right)}\left(1-e^{-t / \tau}\right)+v_{0} e^{-t / \tau}\right]
$$

(l)

PROBLEM 12.32
The current in the generator is

$$
\frac{i}{\ell_{1} d}=\sigma\left(\frac{v}{w}-v B\right)
$$

(a)
where we assume that the \bar{B} field is up and that the fluid flows counter-clockwise. We integrate Newton's law around the channel to obtain

$$
\begin{equation*}
\rho \ell \frac{\partial v}{\partial t}=J B \ell_{1}=\frac{i}{d} B \tag{b}
\end{equation*}
$$

or, using (a),

$$
\begin{equation*}
\frac{\partial V}{\partial t}=\frac{w}{d l_{1} \sigma} \frac{\partial i}{\partial t}+\frac{B^{2} w}{d \rho l} i \tag{c}
\end{equation*}
$$

Integrating, we have

$$
\begin{equation*}
V=\frac{w}{d l_{1} \sigma} i+\frac{B^{2} w}{d \rho l} \int_{0}^{\infty} i d t \tag{d}
\end{equation*}
$$

Defining $\quad R_{i}=\frac{W}{\sigma \ell_{1} d}$
and

$$
c_{i}=\frac{\rho \ell d}{w^{2}}
$$

we rewrite (d) as

$$
\begin{equation*}
V=i R_{i}+\frac{1}{C_{i}} \int_{0}^{\infty} i d t \tag{e}
\end{equation*}
$$

The equivalent circuit implied by (e) is

PROBLEM 12.33
Part a
We assume that the capacitor is initially uncharged when the switch is closed at $t=0$. The current through the capacitor is
$i=C \frac{d V_{C}}{d t}=\sigma \ell C\left(-\frac{V_{C}}{w}+v_{o} B_{o}\right)$
or

$$
\begin{equation*}
\frac{d V_{C}}{d t}+\frac{\sigma \ell d}{w C} V_{C}=\frac{\sigma \ell d v_{o}}{C}{ }_{0} \tag{b}
\end{equation*}
$$

PROBLEM 12.33 (Continued)

The solution for V_{C} is

$$
\begin{equation*}
v_{C}=v_{o} B_{o} w\left(1-e^{-t / \tau}\right) \tag{c}
\end{equation*}
$$

with $\tau=\frac{w C}{\sigma l d}$, where we have used the initial condition that at $t=0$, the voltage cannot change instantaneously across the capacitor. The energy stored as $t \rightarrow \infty$, is

$$
\begin{equation*}
W_{e}=\frac{1}{2} C v_{C}^{2}=\frac{1}{2} \cdot C\left(v_{0} B_{o} w\right)^{2} \tag{d}
\end{equation*}
$$

Part b
The pressure drop along the fluid is

$$
\begin{equation*}
\Delta p=\frac{i B_{0}}{d}=B_{0}^{2} v_{0} \sigma l e^{-t / \tau} \tag{e}
\end{equation*}
$$

The total energy supplied by the fluid source is

$$
\begin{align*}
W_{f} & =\int_{0}^{\infty} \Delta \mathrm{p} v_{o} d w d t \\
& =\int_{0}^{\infty}\left(v_{o} B_{0}\right)^{2} \sigma \ell w d e^{-t / \tau} d t \tag{f}\\
& =-\left.\sigma \ell\left(v_{o} B_{o}\right)^{2} \tau w d e^{-t / \tau}\right|_{0} ^{\infty} \\
W_{f} & =C\left(w v_{0} B_{0}\right)^{2} \tag{g}
\end{align*}
$$

Part c
We see that the energy supplied by the fluid source is twice that stored in the capacitor. The rest of the energy has been dissipated by the conducting fluid. This dissipated energy is

$$
\begin{align*}
W_{d} & =\int_{0}^{\infty} v_{C} \text { idt } \tag{h}\\
& =\int_{0}^{\infty}+\left(v_{0} B_{0}\right)^{2} w\left(1-e^{-t / \tau}\right) \sigma \ell d e^{-t / \tau} d t \\
& =\left.\sigma \ell d w\left(v_{0} B_{0}\right)^{2}\left[-\tau e^{-t / \tau}+\frac{\tau}{2} e^{-2 t / \tau}\right]\right|_{0} ^{\infty} \\
& =\sigma \ell d w\left(v_{0} B_{0}\right)^{2} \frac{\tau}{2} \tag{i}
\end{align*}
$$

Therefore

$$
\begin{equation*}
W_{d}=\frac{1}{2} C\left(v_{o} B_{o} w\right)^{2} \tag{j}
\end{equation*}
$$

Thus

$$
\begin{equation*}
W_{\text {fluid }}=W_{\text {elec }}+W_{\text {dissipated }} \tag{k}
\end{equation*}
$$

As we would expect from conservation of energy.

PROBLEM 12.34
The current through the generator is

$$
\begin{equation*}
\frac{i}{\ell_{1} d}=\sigma\left(\frac{V}{w}-v B_{o}\right) \tag{a}
\end{equation*}
$$

Since the fluid is incompressible, and the channel has constant cross-sectional area, the velocity of the fluid does not change with position. Thus, we write Newton's law as in Eq. (12.2.41) as

$$
\begin{equation*}
\rho \frac{\partial \bar{v}}{\partial t}=-\nabla(p+U)+\bar{J} \times \bar{B} \tag{b}
\end{equation*}
$$

where U is the potential energy due to gravity. We integrate this expression along the length of the tube to obtain

$$
\begin{equation*}
\rho \frac{\partial v}{\partial t} \ell=\frac{i B_{o}}{d}-\rho g\left(x_{a}+x_{b}\right) \tag{c}
\end{equation*}
$$

Realizing that $x_{a}=x_{b}$
and

$$
\begin{equation*}
v=\frac{d x a}{d t} \tag{d}
\end{equation*}
$$

We finally obtain

$$
\begin{equation*}
\frac{d^{2} x_{a}}{d t^{2}}+\frac{\sigma B_{o}^{2} \ell_{1} d x_{a}}{\rho \ell d t}+\frac{2 g}{\ell} x_{a}=\frac{\sigma B_{o} V}{w \rho} \frac{\ell_{1}}{\ell} \tag{e}
\end{equation*}
$$

We assume the transient solution to be of the form

$$
\begin{equation*}
x_{a}=\hat{x} e^{s t} \tag{f}
\end{equation*}
$$

Substituting into the differential equation, we obtain

$$
\begin{equation*}
s^{2}+\frac{\sigma B_{0}^{2} l_{1} s}{\rho \ell}+\frac{2 g}{\ell}=0 \tag{g}
\end{equation*}
$$

Solving for s, we obtain

$$
\begin{equation*}
s=-\frac{\sigma B_{o}^{2} l_{1}}{2 \rho l} \pm \sqrt{\left(\frac{\sigma B_{o}^{2} l_{1}}{2 \rho l}\right)^{2}-\frac{2 g}{l}} \tag{h}
\end{equation*}
$$

Substituting the given numerical values, we obtain

$$
\begin{align*}
& s_{1}=-29.4 \\
& s_{2}=-.665 \tag{i}
\end{align*}
$$

In the steady state

$$
\begin{equation*}
x_{a}=\frac{\sigma B_{o} V \ell_{1}}{w \rho 2 g} \approx .075 \text { meters } \tag{j}
\end{equation*}
$$

Thus the general solution is of the form

$$
\begin{equation*}
x_{a}=.075+A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t} \tag{k}
\end{equation*}
$$

where the initial conditions to solve for A_{1} and A_{2} are

ELECTROMECHANICS OF INCOMPRESSIBLE, INVISCID FLUIDS

PROBLEM 12.34 (continued)

$$
\begin{align*}
& x_{a}(t=0)=0 \\
& \frac{d x_{a}}{d t}(t=0)=0
\end{align*}
$$

Thus, $A_{2}=\frac{.075 s_{1}}{s_{2}-s_{1}}=-.0765$ and $A_{1}=-\frac{.075 s_{2}}{s_{2}-s_{1}}=.00174$
Thus, we have:

$$
x_{a}=.075+.00174 e^{-29.4 t}-.0765 e^{-.665 t}
$$

$f^{x_{a}}$

Now the current is
$i=\ell_{1} d \sigma\left(\frac{V}{W}-B_{0} \frac{d x}{d t}\right)$
$=\ell_{1} d \sigma\left[\frac{V}{W}-B_{o}\left(s_{1} A_{1} e^{s_{1} t}+s_{2} A_{2} e^{s_{2} t}\right)\right]$
$=100-2 \times 10^{3}\left(s_{1} A_{1} e^{S_{1} t}+s_{2} A_{2} e^{S_{2} t}\right)$ amperes
$=100\left(1+e^{-29.4 t}-e^{-.665 t}\right)$
Sketching, we have

PROBLEM 12.35
The currents I_{1} and I_{2} are determined by the resistance of the fluid between the electrodes. Thus

$$
\begin{equation*}
I_{1}=\frac{V_{0} \sigma D x}{w} \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{2}=\frac{V_{0} \sigma D y}{w} \tag{b}
\end{equation*}
$$

The magnetic field produced by the circuit is

$$
\begin{align*}
\bar{B} & =\frac{\mu_{0} N}{\bar{W}}\left(I_{2}-I_{1}\right) \bar{i}_{2} \tag{c}\\
\text { or } \quad \bar{B} & =\frac{\mu_{0} N}{w^{2}} V_{0} \sigma D(y-x) \bar{i}_{2}
\end{align*}
$$

From conservation of mass,

$$
\begin{equation*}
y=(L-x) \tag{e}
\end{equation*}
$$

Thus $\quad \bar{B}=\frac{\mu_{0} N V_{o} \sigma D}{w^{2}}(L-2 x) \bar{i}$
The momentum equation is

$$
\begin{equation*}
\rho \frac{\partial \bar{v}}{\partial t}=-\nabla(p+U)+\bar{J} \times \bar{B} \tag{g}
\end{equation*}
$$

Integrating the equation along the conduit's length, we obtain

$$
\begin{equation*}
\rho \frac{\partial v}{\partial t}(2 L+2 a)=-\rho g(y-x)-J_{0} B L \tag{h}
\end{equation*}
$$

Now

$$
\begin{equation*}
v=-\frac{\partial x}{\partial t} \tag{i}
\end{equation*}
$$

so we write:

$$
\begin{equation*}
2 \rho(L+a) \frac{\partial^{2} x}{\partial t^{2}}+\left(\rho g+J_{o} \frac{\mu_{0} N V_{o} \sigma D L}{w^{2}}\right)(2 x-L)=0 \tag{j}
\end{equation*}
$$

We assume solutions of the form

$$
\begin{equation*}
x=\operatorname{Re} \hat{x} e^{s t}+\frac{L}{2} \tag{k}
\end{equation*}
$$

Thus

$$
s^{2}+\frac{\mathrm{g}}{(\mathrm{~L}+\mathrm{a})}+\frac{\mu_{\mathrm{o}} \mathrm{NV}_{\mathrm{o}} \sigma \mathrm{D}}{\rho w^{2}(\mathrm{~L}+\mathrm{a})} \mathrm{J}_{\mathrm{o}} \mathrm{~L}=0
$$

Defining

$$
\begin{equation*}
\omega_{0}^{2}=\frac{g}{(L+a)}+\frac{\mu_{0}{ }^{N V_{0}} \sigma D J J_{0} L}{\rho w^{2}(L+a)} \tag{m}
\end{equation*}
$$

we have our solution in the form

$$
\begin{equation*}
x=A \sin \omega_{0} t+B \cos \omega_{0} t+\frac{L}{2} \tag{n}
\end{equation*}
$$

Applying the initial conditions

$$
\begin{equation*}
x(0)=L \quad \text { and } \frac{d x(0)}{d t}=0 \tag{o}
\end{equation*}
$$

we obtain $x=\frac{L}{2}\left(1+\cos \omega_{0} t\right)$

PROBLEM 12.36
As from Eqs. (12.2.88-12.2.91), we assume that

$$
\begin{align*}
& \bar{v}=\bar{i}_{\theta} v_{\theta} \\
& \bar{B}=B_{o} \bar{i}_{z}+\bar{i}_{\theta} B_{\theta} \tag{a}\\
& \bar{J}=\bar{i}_{r} J_{r}+\bar{i}_{z} J_{z} \\
& \bar{E}=\bar{i}_{r} E_{r}+\bar{i}_{z} E_{z}
\end{align*}
$$

As derived in Sec. 12.2.3, Eq. (12.2.102), we know that the equation governing Alfvén waves is

$$
\begin{equation*}
\frac{\partial^{2} v_{\theta}}{\partial t^{2}}=\frac{B_{0}{ }^{2}}{\mu_{0} \rho} \frac{\partial^{2} \cdot v_{\theta}}{\partial z^{2}} \tag{b}
\end{equation*}
$$

For our problem, the boundary conditions are:

$$
\begin{array}{ll}
\text { at } z=0 & \mathbf{E}_{\mathbf{r}}=0 \\
\text { at } z=\ell & \mathbf{v}_{\theta}=\operatorname{Re}\left[\Omega r e^{j \omega t}\right] \tag{c}
\end{array}
$$

As in section 12.2 .3 , we assume

$$
\begin{equation*}
v_{\theta}=\operatorname{Re}\left[A(r) \hat{v}_{\theta}(z) e^{j \omega t}\right] \tag{d}
\end{equation*}
$$

Thus, the pertinent differential equation reduces to

$$
\begin{align*}
\frac{\mathrm{d}^{2} \hat{v}_{\theta}}{\mathrm{dz}^{2}} & +\mathrm{k}^{2} \hat{v}_{\theta}=0 \tag{e}\\
k & =\omega \sqrt{\frac{\mu_{0}^{\rho}}{\mathrm{B}_{\mathrm{o}}^{2}}}
\end{align*}
$$

where

The solution is

$$
\begin{equation*}
\hat{v}_{\theta}=c_{1} \cos k z+c_{2} \sin k z \tag{f}
\end{equation*}
$$

Imposing the boundary condition at $z=\ell$, we obtain

$$
\begin{equation*}
A(r)\left[C_{1} \cos k \ell+C_{2} \sin k \ell\right]=\Omega r \tag{g}
\end{equation*}
$$

We let

$$
\begin{equation*}
A(r)=\frac{r}{R} \tag{h}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\Omega R=C_{1} \cos k \ell+C_{2} \sin k \ell \tag{i}
\end{equation*}
$$

Now

$$
\begin{equation*}
E_{r}=-v_{\theta} B_{0} \tag{j}
\end{equation*}
$$

Thus, applying the second boundary condition, we obtain
or $\quad \mathbf{v}_{\theta}(z=0)=0$
$C_{1}=0$
Thus

$$
\begin{equation*}
C_{2}=\frac{\Omega R}{\sin k \ell} \tag{k}
\end{equation*}
$$

Now, using the relations

$$
\begin{equation*}
E_{r}=-v_{0} B_{0} \tag{m}
\end{equation*}
$$

PROBLEM 12.36 (continued)

$$
\begin{gather*}
E_{z}=0 \\
\frac{\partial E_{r}}{\partial z}-\frac{\partial E_{z}}{\partial r}=-\frac{\partial B_{\theta}}{\partial t} \\
-\frac{1}{\mu_{0}} \frac{\partial B_{\theta}}{\partial z}=J_{r} \\
\frac{1}{\mu_{0} r} \frac{\partial\left(r B_{\theta}\right)}{\partial r}=J_{z} \tag{q}
\end{gather*}
$$

(n)
(o)
(p)
we obtain

$$
\begin{aligned}
& v_{\theta}=\operatorname{Re}\left[\frac{\Omega_{r}}{\sin k \ell} \sin k z \quad e^{j \omega t}\right] \\
& B_{\theta}=\operatorname{Re}\left[\frac{\Omega \mathrm{rB}_{\mathrm{o}} \mathrm{k}}{\mathrm{j} \omega_{\sin k \ell}} \cos k z e^{\mathrm{j} \omega \mathrm{t}}\right] \\
& J_{r}=\operatorname{Re}\left[\frac{\Omega_{r B_{0}} k^{2}}{\mu_{0} j \omega \sin k \ell} \sin k z e^{j \omega t}\right] \\
& J_{z}=\operatorname{Re}\left[\frac{2 \Omega B_{o} k}{\mu_{o} j \omega \sin k \ell} \cos k z e^{j \omega t}\right]
\end{aligned}
$$

(r)
(s)
(t)
(u)

PROBLEM 12.37

Part a

We perform a similar analysis as in section 12.2.3, Eqs. (12.2.84-12.2.88). From Maxwell's equation

$$
\begin{equation*}
\nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t} \tag{a}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\frac{\partial E_{y}}{\partial z}=\frac{\partial}{\partial t} B_{x} \tag{b}
\end{equation*}
$$

Now, since the fluid is perfectly conducting,

$$
\begin{equation*}
\bar{E}^{\prime}=\bar{E}+\bar{v}_{i} \times \bar{B}=0 \tag{c}
\end{equation*}
$$

or $\quad \mathrm{E}_{\mathrm{y}}=\mathrm{v}_{\mathrm{x}} \mathrm{B}_{\mathrm{o}}$
Substituting, we obtain

$$
\begin{equation*}
B_{0} \frac{\partial v_{x}}{\partial z}=\frac{\partial B_{x}}{\partial t} \tag{e}
\end{equation*}
$$

The x component of the force equation is

$$
\begin{equation*}
\rho \frac{\partial v_{x}}{\partial t}=\frac{\partial T_{x z}}{\partial z} \tag{f}
\end{equation*}
$$

where

$$
\mathrm{T}_{\mathrm{xz}}=\frac{\mathrm{B}_{\mathrm{o}}}{\mu_{\mathrm{o}}} \mathrm{~B}_{\mathrm{x}}
$$

(g)

PROBLEM 12.37 (continued)
Thus

Eliminating B_{x} and solving for v_{x}, we obtain

$$
\begin{equation*}
\frac{\partial^{2} v_{x}}{\partial t^{2}}=\frac{B_{0}^{2}}{\mu_{0} 0} \frac{\partial^{2} v_{x}}{\partial z^{2}} \tag{i:}
\end{equation*}
$$

or eliminating and solving for H_{x}, we have

$$
\begin{equation*}
\frac{\partial^{2} H_{x}}{\partial t^{2}}=\frac{B_{0}^{2}}{\mu_{0}^{\rho} \rho} \frac{\partial^{2} H_{x}}{\partial z^{2}} \tag{j}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{x}=\mu_{0} H_{x} \tag{k}
\end{equation*}
$$

Part b
The boundary conditions are

$$
\begin{align*}
& v_{x}(-\ell, t)=\operatorname{Re} V e^{j \omega t} \tag{l}\\
& E_{y}(0, t)=0 \rightarrow v_{x}(0, t)=0
\end{align*}
$$

We write the solution in the form

$$
\begin{equation*}
v_{x}=A e^{j(\omega t-k z)}+B e^{j(\omega t+k z)} \tag{n}
\end{equation*}
$$

where

$$
k=\omega \sqrt{\frac{\mu_{0} \rho}{B_{o}^{2}}}
$$

Applying the boundary conditions, we obtain

$$
\begin{equation*}
v_{x}(\ell, t)=\operatorname{Re}\left[-\frac{v \sin k z}{\sin k \ell}\right] e^{j \omega t} \tag{o}
\end{equation*}
$$

Now

$$
\begin{equation*}
B_{0} \frac{\partial v_{x}}{\partial z}=\frac{\partial B_{x}}{\partial t} \tag{p}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{-B_{0} V k \cos k z}{\sin k \ell}=j \omega \mu_{0} \hat{H}_{x} \tag{q}
\end{equation*}
$$

Thus

$$
\begin{equation*}
H_{x}=\operatorname{Re}\left[\frac{-B_{o} v k \cos k z}{j \omega \mu_{o} \sin k \ell} e^{j \omega t}\right] \tag{r}
\end{equation*}
$$

Part c
From Maxwell's equations

$$
\begin{equation*}
\nabla \times \overline{\mathrm{H}}=\overline{\mathrm{I}}_{\mathrm{y}} \frac{\partial \mathrm{H}_{\mathrm{x}}}{\partial z}=\overline{\mathrm{J}} \tag{s}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\bar{J}=\bar{i}_{y} \operatorname{Re}\left[\frac{B_{0} V k^{2} \sin k z}{j \omega \mu_{0} \sin k \ell} e^{j \omega t}\right] \tag{t}
\end{equation*}
$$

PROBLEM 12.37 (continued)
Since $\nabla \cdot \bar{J}=0$, the current must have a return path, so the walls in the $x-z$ plane must be perfectly conducting.

Even though the fluid has no viscosity, since it is perfectly conducting, it interacts with the magnetic field such that for any motion of the fluid, currents are induced such that the magnetic force tends to restore the fluid to its original position. This shearing motion sets the neighboring fluid elements into motion, whereupon this process continues throughout the fluid.

