MIT OpenCourseWare
http://ocw.mit.edu

Solutions Manual for Electromechanical Dynamics

For any use or distribution of this solutions manual, please cite as follows:
Woodson, Herbert H., James R. Melcher, and Markus Zahn. Solutions Manual for Electromechanical Dynamics. vol. 3. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-NonCommercial-Share Alike

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

PROBLEM 11.1

Part a

We add up all the volume force densities on the elastic material, and with the help of equation 11.1 .4 , we write Newton's law as

$$
\begin{equation*}
\rho \frac{\partial^{2} \delta 1}{\partial t^{2}}=\frac{\partial T_{11}}{\partial x_{1}}-\rho g \tag{a}
\end{equation*}
$$

where we have taken $\frac{\partial}{\partial x_{2}}=\frac{\partial}{\partial x_{3}}=0$. Since this is a static problem, we let $\frac{\partial}{\partial t}=0$. Thus,

$$
\begin{equation*}
\frac{\partial \mathrm{T}_{11}}{\partial \mathrm{x}_{1}}=\rho \mathrm{g} \tag{b}
\end{equation*}
$$

From 11.2.32, we obtain

$$
\begin{equation*}
\mathrm{T}_{11}=(2 \mathrm{G}+\lambda) \frac{\partial \delta_{1}}{\partial \mathrm{x}_{1}} \tag{c}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
(2 G+\lambda) \frac{\partial^{2} \delta_{1}}{\partial x_{1}^{2}}=\rho g \tag{d}
\end{equation*}
$$

Solving for δ_{1}, we obtain

$$
\begin{equation*}
\delta_{1}=\frac{\rho g}{2(2 G+\lambda)} x_{1}^{2}+c_{1} x+c_{2} \tag{e}
\end{equation*}
$$

where C_{1} and C_{2} are arbitrary constants of integration, which can be evaluated by the boundary conditions

$$
\begin{equation*}
\delta_{1}(0)=0 \tag{f}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{T}_{11}(\mathrm{~L})=(2 \mathrm{G}+\lambda) \frac{\partial \delta_{1}}{\partial \mathrm{x}_{1}}(\mathrm{~L})=0 \tag{g}
\end{equation*}
$$

since $x_{1}=L$ is a free surface. Therefore, the solution is

$$
\begin{equation*}
\delta_{1}=\frac{\rho g x_{1}}{2(2 G+\lambda)}\left[x_{1}-2 L\right] \tag{f}
\end{equation*}
$$

Part b
Again applying 11.2.32

PROBLEM 11.1 (Continued)

$$
\begin{align*}
& \mathrm{T}_{11}=(2 \mathrm{G}+\lambda) \frac{\partial \delta_{1}}{\partial \mathrm{x}_{1}}=\rho \mathrm{g}\left[\mathrm{x}_{1}-\mathrm{L}\right) \\
& \mathrm{T}_{12}=\mathrm{T}_{21}=0 \\
& \mathrm{~T}_{13}=\mathrm{T}_{31}=0 \\
& \mathrm{~T}_{22}=\lambda \frac{\partial \delta_{1}}{\partial \mathrm{x}_{1}}=\frac{\lambda \rho g}{(2 \mathrm{G}+\lambda)}\left[\mathrm{x}_{1}-\mathrm{L}\right] \tag{g}\\
& \mathrm{T}_{33}=\lambda \frac{\partial \delta_{1}}{\partial \mathrm{x}_{1}}=\frac{\lambda \rho \mathrm{g}}{(2 \mathrm{G}+\lambda)}\left[\mathrm{x}_{1}-\mathrm{L}\right] \\
& \mathrm{T}_{32}=\mathrm{T}_{23}=0 \\
& \overline{\overline{\mathrm{~T}}}=\left[\begin{array}{lll}
\mathrm{T}_{11} & 0 & 0 \\
0 & \mathrm{~T}_{22} & 0 \\
0 & 0 & \mathrm{~T}_{33}
\end{array}\right]
\end{align*}
$$

(h)

PROBLEM 11.2
Since the electric force only acts on the surface at $x_{1}=-L$, the equation of motion for the elastic material ($-\mathrm{L} \leq \mathrm{x}_{1} \leq 0$) is from Eqs. (11.1.4) and (11.2.32),

$$
\rho \frac{\partial^{2} \delta_{1}}{\partial t^{2}}=(2 G+\lambda) \frac{\partial^{2} \delta_{1}}{\partial x_{1}^{2}}
$$

(a)

The boundary conditions are

$$
\delta_{1}(0, t)=0
$$

and

$$
M \frac{\partial^{2} \delta_{1}(-L, t)}{\partial t^{2}}=a D(2 G+\lambda) \frac{\partial \delta_{1}}{\partial x_{1}}(-L, t)+f^{e}
$$

(b)
f^{e} is the electric force in the x_{1} direction at $x_{1}=-L$, and may be found by using the Maxwell Stress Tensor $T_{i j}=\varepsilon E_{i} E_{j}-\frac{1}{2} \delta_{i j} \varepsilon E_{k} E_{k}$ to be (see Appendix G for discussion of stress tensor),

$$
f^{e}=-\frac{\varepsilon}{2} \quad E^{2} a D
$$

with

$$
\begin{equation*}
E=\frac{v_{0}+v_{1} \cos \omega t}{d+\delta_{1}(-L, t)} \tag{c}
\end{equation*}
$$

PROBLEM 11.2 (continued)

Expanding f^{e} to linear terms only, we obtain

$$
\begin{equation*}
f^{e}=-\frac{\varepsilon a D}{2}\left[\frac{v_{o}^{2}}{d^{2}}+\frac{2 V_{o} V_{1} \cos \omega t}{d^{2}}-\frac{2 V_{o}^{2}}{d^{3}} \delta_{1}(-L, t)\right] \tag{d}
\end{equation*}
$$

We have neglected all second order products of small quantities.
Because of the constant bias V_{0}, and the sinusoidal nature of the perturbations, we assume solutions of the form

$$
\begin{equation*}
\delta_{1}\left(x_{1}, t\right)=\delta_{1}\left(x_{1}\right)+\operatorname{Re} \hat{\delta} e^{j\left(\omega t-k x_{1}\right)} \tag{e}
\end{equation*}
$$

where

$$
\hat{\delta} \ll \delta_{1}\left(x_{1}\right) \ll L
$$

The relationship between ω and k is readily found by substituting (e) into (a), from which we obtain

$$
\begin{equation*}
k= \pm \frac{\omega}{v_{p}} \text { with } \quad v_{p}=\sqrt{\frac{2 G+\lambda}{\rho}} \tag{f}
\end{equation*}
$$

We first solve for the equilibrium configuration which is time independent.
Thus

$$
\begin{equation*}
\frac{\partial^{2} \delta_{1}\left(x_{1}\right)}{\partial x_{1}^{2}}=0 \tag{g}
\end{equation*}
$$

This implies

$$
\delta_{1}\left(x_{1}\right)=C_{1} x_{1}+C_{2}
$$

Because $\delta_{1}(0)=0, C_{2}=0$.
From the boundary condition at $\left.x_{1}=-L(b) \&(d)\right)$

$$
\begin{equation*}
a D(2 G+\lambda) C_{1}-\frac{\varepsilon}{2} \frac{v_{0}^{2}}{d^{2}} a D=0 \tag{h}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\delta_{1}\left(\mathrm{x}_{1}\right)=+\frac{\varepsilon}{2} \frac{\mathrm{v}_{\mathrm{o}}^{2}}{\mathrm{~d}^{2}(2 \mathrm{G}+\lambda)} \mathrm{x}_{1} \tag{i}
\end{equation*}
$$

Note that $\delta_{1}\left(x_{1}=-L\right)$ is negative, as it should be.
For the time varying part of the solution, using (f) and the boundary condition

$$
\delta(0, t)=0
$$

PROBLEM 11.2 (continued)
we can let the perturbation δ_{1} be of the form

$$
\begin{equation*}
\delta_{1}\left(x_{1}, t\right)=\operatorname{Re} \hat{\delta} \sin k x_{1} e^{j \omega t} \tag{j}
\end{equation*}
$$

Substituting this assumed solution into (b) and using (d), we obtain

$$
\begin{align*}
+M_{w}^{2} \hat{\delta} \sin k L & =a D(2 G+\lambda) k \hat{\delta} \cos k L \tag{k}\\
& -\frac{\varepsilon a D v_{o} V_{1}}{d^{2}}-\frac{\varepsilon a D v_{o}^{2}}{d^{3}} \hat{\delta} \sin k L
\end{align*}
$$

Solving for $\hat{\delta}$, we have

$$
\hat{\delta}=-\frac{\varepsilon a D V_{o} v_{1}}{d^{2}\left[M_{w}^{2} \sin k L-a D(2 G+\lambda) k \cos k L+\frac{\varepsilon a D v_{o}^{2}}{d^{3}} \sin k L\right]}
$$

Thus, because $\hat{\delta}$ has been shown to be real,

$$
\begin{equation*}
\delta_{1}(-L, t)=-\frac{\varepsilon}{2} \frac{\mathrm{v}_{0}^{2} \mathrm{~L}}{\mathrm{~d}^{2}(2 \mathrm{G}+\lambda)}-\hat{\delta} \sin \mathrm{kL} \cos \omega t \tag{m}
\end{equation*}
$$

Part b
If $k \ell \ll 1$, we can approximate the sinusoidal part of (m) as

$$
\begin{equation*}
\delta_{1}(-L, t)=\frac{\varepsilon a D V_{o} V_{1} \cos \omega t}{d^{2}\left[M \omega^{2}-\frac{a D(2 G+\lambda)}{L}+\frac{\varepsilon a D V_{o}^{2}}{d^{3}}\right]} \tag{n}
\end{equation*}
$$

We recognize this as a force-displacement relation for a mass on the end of a spring.

Part c
We thus can model (n) as

PROBLEM 11.2 (Continued)

where

$$
f=-\frac{\varepsilon a D V_{0} V_{1} \cos \omega t}{d^{2}}
$$

and

$$
K=\frac{a D(2 G+\lambda)}{L}-\frac{\varepsilon a D v_{o}^{2}}{d^{3}}
$$

We see that the electrical force acts like a negative spring constant. PROBLEM 11. 3

Part a

From (11.1.4), we have the equation of motion in the x_{2} direction as

$$
\begin{equation*}
\rho \frac{\partial^{2} \delta_{2}}{\partial t^{2}}=\frac{\partial T_{21}}{\partial x_{1}} \tag{a}
\end{equation*}
$$

From(11.2.32),

$$
T_{21}=G\left[\frac{\partial \delta_{2}}{\partial x_{1}}\right]
$$

(b)

Therefore, substituting (b) into (a), we obtain an equation for δ_{2}

$$
\begin{equation*}
\rho \frac{\partial^{2} \delta_{2}}{\partial t^{2}}=G \frac{\partial^{2} \delta_{2}}{\partial x_{1}^{2}} \tag{c}
\end{equation*}
$$

We assume solutions of the form

$$
\begin{equation*}
\delta_{2}=\operatorname{Re} \hat{\delta}_{2} e^{j\left(\omega t-k x_{1}\right)} \tag{d}
\end{equation*}
$$

where from (c) we obtain

$$
k= \pm \frac{W}{v_{p}} \quad v_{p}^{2}=\frac{G}{\rho}
$$

Thus we let

$$
\begin{gathered}
\delta_{2}=\operatorname{Re}\left[\delta_{a} e^{j\left(\omega t-k x_{1}\right)}+\delta_{b} e^{j\left(\omega t+k x_{1}\right)}\right. \\
.
\end{gathered}
$$

(e)

The boundary conditions are

$$
\begin{equation*}
\delta_{2}(l, t)=\delta_{0} e^{j \omega t} \tag{f}
\end{equation*}
$$

PROBLEM 11.3 (continued)
and

$$
\left.\frac{\partial \delta_{2}}{\partial x_{1}}\right|_{x_{1}=0}=0
$$

(g)
since the surface at $\mathrm{x}_{1}=0$ is free.
Therefore

$$
\begin{equation*}
\delta_{a} e^{-j k \ell}+\delta_{b} e^{j k \ell}=\delta_{0} \tag{h}
\end{equation*}
$$

and

$$
\begin{equation*}
-j k \delta_{a}+j k \delta_{b}=0 \tag{i}
\end{equation*}
$$

Solving, we obtain

$$
\begin{equation*}
\delta_{a}=\delta_{b}=\frac{\delta_{0}}{2 \operatorname{cosk} \ell} \tag{j}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\delta_{2}\left(x_{1}, t\right)=\operatorname{Re}\left[\frac{\delta_{0}}{\cos k \ell} \cos k x_{1} e^{j \omega t}\right]=\frac{\delta_{0}}{\cos k \ell} \cos k x_{1} \cos \omega t \tag{k}
\end{equation*}
$$

and

$$
\begin{align*}
T_{21}\left(x_{1}, t\right) & =-\operatorname{Re}\left[\frac{G \delta_{0} k}{\cos k \ell} \sin k x_{1} e^{j \omega t}\right] \tag{l}\\
& =-\frac{G \delta_{0} k}{\cos k \ell} \sin k x_{1} \cos \omega t
\end{align*}
$$

Part b
In the limit as ω gets small

$$
\begin{equation*}
\delta_{2}\left(x_{1}, t\right) \rightarrow \operatorname{Re}\left[\delta_{o} e^{j \omega t}\right] \tag{m}
\end{equation*}
$$

In this limit, δ_{2} varies everywhere in phase with the source. The slab of elastic material moves as a rigid body. Note from (ℓ) that the force per unit area at $x_{1}=\ell$ required to set the slab into motion is $T_{21}(\ell, t)=\rho \ell \frac{d^{2}}{d t^{2}}\left(\delta_{0} \cos \omega t\right)$ or the. mass $/\left(x_{2}-x_{3}\right)$ area times the rigid body acceleration.

Part c

The slab can resonate if we can have a finite displacement, even as $\delta_{0} \rightarrow 0$.
This can happen if the denominator of (k) vanishes

$$
\begin{equation*}
\cos k \ell=0 \tag{n}
\end{equation*}
$$

or

$$
\begin{equation*}
\omega=\frac{(2 n+1) \pi v_{p}}{2 l} \quad n=0,1,2, \ldots \tag{0}
\end{equation*}
$$

PROBLEM 11.3 (continued)
The lowest frequency is for $n=0$

$$
\begin{equation*}
\text { or } \omega_{\text {low }}=\frac{\pi v_{p}}{2 \ell} \tag{p}
\end{equation*}
$$

PROBLEM 11.4

Part a
We have that

$$
\tau_{i}=T_{i j} n_{j}=\alpha \delta_{i j} n_{j}
$$

It is given that the $T_{i j}$ are known, thus the above equation may be written as three scalar equations $\left(T_{i j}-\alpha \delta_{i j}\right) n_{j}=0$, or:

$$
\begin{align*}
& \left(T_{11}-\alpha\right) n_{1}+T_{12} n_{2}+T_{13} n_{3}=0 \\
& T_{21} n_{1}+\left(T_{22}-\alpha\right) n_{2}+T_{23} n_{3}=0 \tag{a}\\
& T_{31} n_{1}+T_{32} n_{2}+\left(T_{33}-\alpha\right) n_{3}=0
\end{align*}
$$

Part b

The solution for these homogeneous equations requires that the determinant of the coefficients of the n_{i} 's equal zero.
Thus

$$
\begin{align*}
& \left(\mathrm{T}_{11}-\alpha\right)\left[\left(\mathrm{T}_{22}-\alpha\right)\left(\mathrm{T}_{33}-\alpha\right)-\left(\mathrm{T}_{23}\right)^{2}\right] \\
& \quad-\mathrm{T}_{12}\left[\mathrm{~T}_{12}\left(\mathrm{~T}_{33}-\alpha\right)-\mathrm{T}_{13} \mathrm{~T}_{23}\right] \tag{b}\\
& \quad+\mathrm{T}_{13}\left[\mathrm{~T}_{12} \mathrm{~T}_{23}-\mathrm{T}_{13}\left(\mathrm{~T}_{22}-\alpha\right)\right]=0
\end{align*}
$$

where we have used the fact that

$$
\begin{equation*}
\mathrm{T}_{i j}=\mathrm{T}_{j i} \tag{c}
\end{equation*}
$$

Since the $T_{i j}$ are known, this equation can be solved for α.
Part c
Consider $T_{12}=T_{21}=T_{0}$, with all other components equal to zero. The determinant of coefficients then reduces to

$$
\begin{equation*}
-\alpha^{3}+T_{0}^{2} \alpha=0 \tag{d}
\end{equation*}
$$

for which

$$
\begin{equation*}
\alpha=0 \tag{e}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha= \pm T_{0} \tag{f}
\end{equation*}
$$

The $\alpha=0$ solution indicates that with the normal in the x_{3} direction, there is no normal stress. The $\alpha= \pm \mathrm{T}_{0}$ solution implies that there are two surfaces where the net traction is purely normal with stresses $\pm T_{0}$, respectively, as

PROBLE' 11.4 (continued)

found in example 11.2.1. Note that the normal to the surface for which the shear stress is zero can be found from (a), since α is known, and it is known that $|\bar{n}|=1$.

PROBLEM 11.5
From Eqs. 11.2.25-11.2.28, we have

$$
\begin{align*}
& \mathbf{e}_{11}=\frac{1}{E}\left[T_{11}-v\left(T_{22}+T_{33}\right)\right] \tag{a}\\
& \mathbf{e}_{22}=\frac{1}{E}\left[T_{22}-v\left(T_{33}+T_{11}\right)\right] \tag{b}\\
& \mathbf{e}_{33}=\frac{1}{E}\left[T_{33}-v\left(T_{11}+T_{22}\right)\right] \tag{c}
\end{align*}
$$

and

$$
\begin{equation*}
e_{i j}=\frac{T_{i j}}{2 G} \quad i \neq j \tag{d}
\end{equation*}
$$

These relations must still hold in a primed coordinate system, where we can use the transformations

$$
\begin{equation*}
T_{i j}^{\prime}=a_{i k} a_{j \ell} T_{k \ell} \tag{e}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{i j}^{\prime}=a_{i k} a_{j \ell} e_{k \ell} \tag{f}
\end{equation*}
$$

For an example, we look at e'

$$
\begin{equation*}
e_{11}^{\prime}={ }^{\prime}{ }_{1 k} a_{1 \ell} e_{k \ell}=\frac{1}{E}\left[T_{11}^{\prime}-\nu\left(T_{22}^{\prime}+T_{33}^{\prime}\right)\right] \tag{g}
\end{equation*}
$$

This may be rewritten as

$$
\begin{equation*}
a_{1 k} a_{1 \ell} e_{k \ell}=\frac{1}{E}\left[(1+v) a_{1 k} a_{1 \ell} T_{k \ell}-v \delta_{k \ell} T_{k \ell}\right] \tag{h}
\end{equation*}
$$

where we have used the relation from Eq.(8.2.23), page G10 or 439.

$$
\begin{equation*}
a_{p r} a_{p s}=\delta_{p s} \tag{i}
\end{equation*}
$$

Consider some values of k and ℓ where $k \neq \ell$.
Then, from the stress-strain relation in the unprimed frame,

$$
\begin{equation*}
{ }^{a}{ }_{1 k}{ }^{a} 1 \ell{ }_{k \ell}={ }^{a_{1 k}}{ }^{a} 1 \ell \frac{T_{k \ell}}{2 G}=\frac{{ }^{a} k^{a}{ }^{a} 1 \ell}{E}(1+v) T_{k \cdot \ell} \tag{j}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{1}{2 G}=\frac{1+v}{E} \tag{k}
\end{equation*}
$$

or
$E=2 G(1+v)$ which agrees with Eq. (g) of
example 11.2.1.

PROBLEM 11.6
Part a
Following the analysis in Eqs. 11.4.16-11.4.26, the equation of motion for the bar is

$$
\begin{equation*}
\frac{\partial^{2} \xi}{\partial t^{2}}+\frac{E b^{2}}{3 \rho} \frac{\partial^{4} \xi}{\partial x_{1}^{4}}=0 \tag{a}
\end{equation*}
$$

where ξ measures the bar displacement in the x_{2} direction, T_{2} in Eq. $11.4 .26=0$ as the surfaces at $x_{2}= \pm b$ are free. The boundary conditions for this problem are that at $x_{1}=0$ and at $x_{1}=L$

$$
\begin{equation*}
\dot{\mathrm{T}}_{21}=0 \text { and } \mathrm{T}_{11}=0 \tag{b}
\end{equation*}
$$

as the ends are free.
We assume solutions of the form

$$
\begin{equation*}
\xi=\operatorname{Re} \hat{\xi}(x) e^{j \omega t} \tag{c}
\end{equation*}
$$

As in example 11.4.4, the solutions for $\hat{\xi}(x)$ are

$$
\begin{equation*}
\hat{\xi}(x)=A \sin \alpha x_{1}+B \cos \alpha x_{1}+C \sinh \alpha x_{1}+D \cosh \alpha x_{1} \tag{d}
\end{equation*}
$$

with $\quad \alpha=\left[\omega^{2}\left(\frac{3 \rho}{E b^{2}}\right)\right]^{1 / 4}$
Now, from Eqs. 11.4.18 and 11.4.21,

$$
\begin{equation*}
\mathrm{T}_{21}=\frac{\left(\mathrm{x}_{2}^{2}-\mathrm{b}^{2}\right) \mathrm{E}}{2} \frac{\partial^{3} \xi}{\partial \mathrm{x}_{1}^{3}} \tag{e}
\end{equation*}
$$

which implies

$$
\begin{gather*}
\frac{\partial^{3} \xi}{\partial x_{1}^{3}}=0 \tag{f}\\
\text { at } x_{1}=0, x_{1}=L
\end{gather*}
$$

and

$$
\begin{equation*}
T_{11}=-x_{2} E \frac{\partial^{2} \xi}{\partial x_{1}^{2}} \tag{g}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{\partial^{2} \xi}{\partial x_{1}^{2}}=0 \tag{h}
\end{equation*}
$$

at $x_{1}=0$ and $x_{1}=L$

PROBLEM 11.6 (continued)

With these relations, the boundary conditions require that
$-\mathrm{A}+\mathrm{C}=0$
$-A \cos \alpha L+B \sin \alpha L+C \cosh \alpha L+D \sinh \alpha L=0$
$-\mathrm{B}+\mathrm{D} \quad=0$
$-A \sin \alpha L-B \cos \alpha L+C \sinh \alpha L+D \cosh \alpha L=0$

The solution to this set of homogeneous equations requires that the determinant of the coefficients of A, B, C, and D equal zero. Performing this operation, we obtain

$$
\begin{equation*}
\cos \alpha \mathrm{L} \cosh \alpha \mathrm{~L}=1 \tag{j}
\end{equation*}
$$

Thus,

Part b

$$
\begin{equation*}
\beta=\alpha L=\left[\omega^{2}\left(\frac{3 \rho}{E b^{2}}\right)\right]^{1 / 4} L \tag{k}
\end{equation*}
$$

The roots of $\cos \beta=\frac{1}{\cosh \beta}$ follow from the figure.

Note from the figure that the roots al are essentially the roots $3 \pi / 2,5 \pi / 2, \ldots$ of $\cos \alpha L=0$.

PROBLEM 11.6 (continued)

Part c

$$
\begin{align*}
& \text { It follows from (i) that the eigenfunction is } \\
& \qquad \begin{aligned}
\hat{\xi}= & A^{\prime}\left[\left(\sin \alpha x_{1}+\sinh \alpha x_{1}\right)(\sin \alpha L+\sinh \alpha L)\right. \\
& +(\cos \alpha L-\cosh \alpha L)\left(\cos \alpha x_{1}+\cosh \alpha x_{1}\right)
\end{aligned}
\end{align*}
$$

where A^{\prime} is an arbitrary amplitude. This expression is found by taking one of the constants A ... D as known, and solving for the others. Then, (d) gives the required dependence on x_{1} to within an arbitrary constant. A sketch of this function is shown in the figure.

PROBLEM 11.7

As in problem 11.6, the equation of motion for the elastic beam is

$$
\begin{equation*}
\frac{\partial^{2} \xi}{\partial t^{2}}+\frac{E b^{2}}{3 \rho} \cdot \frac{\partial^{4} \xi}{\partial x_{1}^{4}}=0 \tag{a}
\end{equation*}
$$

The four boundary conditions for this problem are:

$$
\begin{align*}
& \xi\left(x_{1}=0\right)=0 \quad \xi\left(x_{1}=L\right)=0 \\
& \delta_{1}(0)=-\left.x_{2} \frac{\partial \xi}{\partial x_{1}}\right|_{x_{1}=0}=0 \quad \delta_{1}(L)=-\left.x_{2} \frac{\partial \xi}{\partial x_{1}}\right|_{x_{1}=L}=0 \tag{b}
\end{align*}
$$

We assume solutions of the form

$$
\begin{gather*}
\hat{\xi}\left(x_{1}, t\right)=\operatorname{Re} \hat{\xi}\left(x_{1}\right) e^{j \omega t} \text {, and as in problem } 11.6 \text {, the solutions for } \\
\hat{\xi}\left(x_{1}\right) \text { are } \\
\hat{\xi}\left(x_{1}\right)=A \sin \alpha x_{1}+B \cos \alpha x_{1}+C \sinh \alpha x_{1}+D \cosh \alpha x_{1} \\
\text { with } \alpha=\left[\omega^{2}\left(\frac{3 \rho}{E b^{2}}\right)\right] \tag{d}
\end{gather*}
$$

Applying the boundary conditions, we obtain

The solution to this set of homogeneous equations requires that the determinant of the coefficients of A, B, C, D, equal zero. Performing this operation, we obtain

$$
\begin{equation*}
\cos \alpha \mathrm{L} \cosh \alpha \mathrm{~L}=+1 \tag{f}
\end{equation*}
$$

To soive for the natural frequencies, we must use a graphical procedure.

The first natural frequency is at about

$$
\alpha \mathrm{L}=\frac{3 \pi}{2}
$$

Thus

$$
\omega^{2}\left(\frac{3 \rho}{E b^{2}}\right) \mathrm{L}^{4}=\left(\frac{3 \pi}{2}\right)^{4}
$$

or

$$
\omega=\frac{\left(\frac{3 \pi}{2}\right)^{2}}{\mathrm{~L}^{2}}\left(\frac{\mathrm{~Eb}^{2}}{3 \rho}\right)^{1 / 2}
$$

(g)

Part b

We are given that $L=.5 \mathrm{~m}$ and $\mathrm{b}=5 \times 10^{-4} \mathrm{~m}$
From Table 9.1, Appendix G, the parameters for steel are:

$$
\begin{aligned}
& \mathrm{E} \approx 2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2} \\
& \rho \approx 7.75 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

PROBLEM 11.7 (continued)

$$
\omega \approx 120 \mathrm{rad} / \mathrm{sec} .
$$

Then, $f_{1}=\frac{\omega}{2 \pi} \approx 19 \mathrm{~Hz}$.

Part c

For the next higher resonance, $\quad \alpha \mathrm{L} \approx \frac{5}{2} \pi$
Therefore, $\mathrm{f}_{2}=\left(\frac{5}{2}\right)^{2} \mathrm{f}_{1} \approx 53 \mathrm{~Hz}$.
PROBLEM 11.8
Part a
As in Prob. 11.7, the equation of motion for the beam is

$$
\begin{equation*}
\frac{\partial^{2} \xi}{\partial t^{2}}+\frac{E b^{2}}{3 \rho} \frac{\partial^{4} \xi}{\partial x_{1}} 4=0 \tag{a}
\end{equation*}
$$

At $x_{1}=L$, there is a free end, so the boundary conditions are:

$$
\begin{align*}
& \mathrm{T}_{11}\left(\mathrm{x}_{1}=\mathrm{L}\right)=0 \\
& \mathrm{~T}_{21}\left(\mathrm{x}_{1}=\mathrm{L}\right)=0 \tag{b}
\end{align*}
$$

and

The boundary conditions at $x_{1}=0$ are

$$
\begin{equation*}
M \frac{\partial^{2} \xi(0, t)}{\partial t^{2}}=+\int\left(T_{21}\right)_{x_{1}=0} D d x_{2}+\bar{f}_{e}+\bar{F}_{0} \tag{c}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{1}\left(x_{1}=0\right)=0 \tag{d}
\end{equation*}
$$

The $\overline{\mathrm{H}}$ field in the air gap and in the plunger is

$$
\begin{equation*}
\bar{H}=\frac{N i}{D} \bar{i}_{1} \tag{e}
\end{equation*}
$$

Using the Maxwell stress tensor

$$
\begin{align*}
& \bar{f} e=-\frac{\left(\mu-\mu_{0}\right)}{2}\left(\frac{N^{2} i^{2}}{D^{2}}\right) D^{2} \bar{i}_{2}=-\frac{N^{2} i^{2}}{2}\left(\mu-\mu_{0}\right) \bar{i}_{2} \tag{f}\\
& \text { with } i=I_{o}+i_{1} \cos \omega t=I_{0}+\operatorname{Re} i_{1} e^{j \omega t}
\end{align*}
$$

PROBLEM 11.8 (continued)

We linearize $\overline{\mathrm{f}}^{\mathrm{e}}$ to obtain

$$
\begin{equation*}
\overline{\mathrm{f}}^{\mathrm{e}}=-\frac{\mathrm{N}^{2}}{2}\left(\mu-\mu_{\mathrm{o}}\right)\left[\mathrm{I}_{\mathrm{o}}^{2}+2 \mathrm{I}_{\mathrm{o}} \mathrm{i}_{1} \cos \omega t\right] \overline{\mathrm{I}_{2}} \tag{g}
\end{equation*}
$$

For equilibrium

$$
\bar{F}_{0}-\frac{N^{2}}{2}\left(\mu-\mu_{0}\right) I_{0}^{2} \bar{i}_{2}=0
$$

Thus

$$
\begin{equation*}
\bar{F}_{o}=\frac{N^{2}}{2}\left(\mu-\mu_{o}\right) I_{o}{ }^{2} \bar{I}_{2} \tag{h}
\end{equation*}
$$

Part b
We write the solution to Eq. (a) in the form

$$
\xi\left(x_{1}, t\right)=\operatorname{Re} \hat{\xi}\left(x_{1}\right) e^{j \omega t}
$$

where, from example 11.4.4

$$
\begin{equation*}
\hat{\xi}\left(x_{1}\right)=A_{1} \sin \alpha x_{1}+A_{2} \cos \alpha x_{1}+A_{3} \sinh \alpha x_{1}+A_{4} \cosh \alpha x_{1} \tag{i}
\end{equation*}
$$

with

$$
\alpha=\left[\omega^{2}\left(\frac{3 \rho}{E b^{2}}\right)\right]^{1 / 4}
$$

Now, from Eqs. 11.4.6 and 11.4.16

$$
\begin{equation*}
\mathrm{T}_{11}(\mathrm{x}=\mathrm{L})=\frac{\partial \delta_{1}}{\partial \mathrm{x}_{1}}=-E x_{2} \frac{\partial^{2} \xi}{\partial \mathrm{x}_{1}^{2}}=0 \tag{j}
\end{equation*}
$$

Thus

$$
\frac{\partial^{2} \xi}{\partial x_{1}^{2}}\left(x_{1}=\mathrm{L}\right)=0
$$

From Eq. 11.4.21

$$
\begin{equation*}
T_{21}=\frac{\left(x_{2}^{2}-b^{2}\right)}{2} E \frac{\partial^{3} \xi}{\partial x_{1}^{3}} \tag{k}
\end{equation*}
$$

and from Eq. 11.4.16

$$
\delta_{1}\left(x_{1}=0\right)=-x_{2}\left(\frac{\partial \xi}{\partial x_{1}}\right)_{x_{1}=0}=0
$$

Thus $\quad\left(\frac{\partial \xi}{\partial x_{1}}\right)_{x_{1}=0}=0$

PROLLEM 11.8(continued)

Applying the boundary conditions from Eqs. (b), (c), (d) to our solution of Eq. (i), we obtain the four equations

A_{1}	$+A_{3}$	$=0$
$-A_{1} \sin \alpha L$	$-A_{2} \cos \alpha l+A_{3} \sinh \alpha L+A_{4} \cosh \alpha L$	$=0$
$-A_{1} \cos \alpha L+A_{2} \sin \alpha L+A_{3} \cosh \alpha L+A_{4} \sinh \alpha L$	$=0$	
$-\frac{2}{3} \alpha^{3} b^{3} E D A_{1}+M \omega^{2} A_{2}+\frac{2}{3} \alpha^{3} b^{3} E D A_{3}+M \omega^{2} A_{4}=+N^{2} I_{0} I_{1}\left(\mu-\mu_{0}\right)$		

(m)

Now

$$
\begin{align*}
v & =\frac{d \lambda}{d t}=\frac{d}{d t}\left\{\frac{N^{2} i}{D} D\left[\mu_{0} \xi(0)+\mu(D-\xi(0))\right]\right\} \tag{n}\\
\text { or } \quad \hat{v} & =-N^{2} I_{o}\left(\mu-\mu_{0}\right) j \omega\left(A_{2}+A_{4}\right)+N^{2} i_{1} \mu D j \omega \tag{o}
\end{align*}
$$

We solve Eqs. (m) for A_{2} and A_{4} using Cramer's rule to obtain
$A_{2}=\frac{N^{2} I_{o} i_{1}\left(\mu-\mu_{0}\right)(-1+\sin \alpha L \sinh \alpha L-\cos \alpha L \cosh \alpha L)}{-2 M \omega^{2}(1+\cos \alpha L \cosh \alpha L)+\frac{4}{3}(\alpha b)^{3} E D(\cos \alpha L \sinh \alpha L+\sin \alpha L \cosh \alpha L)}$
and
$A_{4}=\frac{N^{2} I_{o} i_{1}\left(\mu-\mu_{0}\right)(-1-\cos \alpha L \cosh \alpha L-\sin \alpha L \sinh \alpha L)}{-2 M \omega^{2}(1+\cos \alpha L \cosh \alpha L)+\frac{4}{3}(\alpha b)^{3} E D(\cos \alpha L \sinh \alpha L+\sin \alpha L \cosh \alpha L)}$
(q)

$$
\begin{align*}
& \text { Thus } \\
& Z(j \omega)=\frac{\hat{v}(j \omega)}{i_{1}}= \frac{+\left[N^{2} I_{o}\left(\mu-\mu_{o}\right)\right]^{2} j \omega(+2+2 \cos \alpha L \cosh \alpha L)}{-2 M \omega^{2}(1+\cos \alpha L \cosh \alpha L)+\frac{4}{3}(\alpha b)^{3} E D(\cos \alpha L \sinh \alpha L+\sin \alpha L \cosh \alpha L)} \\
&+N^{2} \mu D j \omega \tag{r}
\end{align*}
$$

Part c

$Z(j \omega)$ has poles when

$$
+2 M \omega^{2}(1+\cos \alpha L \cosh \alpha L)=\frac{4}{3}(\alpha b)^{3} E D(\cos \alpha L \sinh \alpha L+\sin \alpha L \cosh \alpha L)
$$

PROBLEM 11.9

Part a
The flux above and below the beam must remain constant. Therefore, the $\overline{\mathrm{H}}$ field above is

$$
\begin{equation*}
\bar{H}_{a}=\frac{H_{0}(a-b)}{(a-b-\xi)} \bar{i}_{1} \tag{a}
\end{equation*}
$$

and the \bar{H} field below is

$$
\begin{equation*}
\vec{H}_{b}=\frac{H_{0}(a-b)}{(a-b+\xi)} \bar{i}_{1} \tag{b}
\end{equation*}
$$

Using the Maxwell stress tensor, the magnetic force on the beam is

$$
\begin{align*}
T_{2}=-\frac{\mu_{0}}{2}\left(H_{a}^{2}-H_{b}^{2}\right) & =-\frac{\mu_{0}}{2} H_{o}^{2}(a-b)^{2}\left(+\frac{4 \xi}{(a-b)^{3}}\right) \\
& =-\frac{2 \mu_{0} H_{o}^{2} \xi}{(a-b)} \tag{c}
\end{align*}
$$

Thus, from Eq. 11.4.26, the equation of motion on the beam is

$$
\begin{equation*}
\frac{\partial^{2} \xi}{\partial t^{2}}+\frac{E b^{2}}{3 \rho} \frac{\partial^{4} \xi}{\partial x_{1}^{4}}=-\frac{\mu_{o} H_{o}^{2} \xi}{(a-b) b \rho} \tag{d}
\end{equation*}
$$

Again, we let

$$
\begin{equation*}
\xi\left(x_{1}, t\right)=\operatorname{Re} \hat{\xi}\left(x_{1}\right) e^{j \omega t} \tag{e}
\end{equation*}
$$

with the boundary conditions

$$
\begin{array}{ll}
\xi\left(x_{1}=0\right)=0 & \xi\left(x_{1}=L\right)=0 \tag{f}\\
\delta_{1}\left(x_{1}=0\right) & \delta_{1}\left(x_{1}=L\right)=0
\end{array}
$$

Since $\delta_{1}=-x_{2} \partial \xi / \partial x_{1}$ from Eq. 11.4.16, this implies that:

$$
\begin{equation*}
\frac{\partial \xi}{\partial x_{1}}\left(x_{1}=0\right)=0 \text { and } \frac{\partial \xi}{\partial x_{1}}\left(x_{1}=L\right)=0 \tag{g}
\end{equation*}
$$

Substituting our assumed solution into the equation of motion, we have

$$
\begin{equation*}
-\omega^{2} \hat{\xi}+\frac{E b^{2}}{3 \rho} \frac{\partial^{4} \hat{\xi}}{\partial x_{1}^{4}}+\frac{\mu_{0} H_{o}^{2} \hat{\xi}}{(a-b) b \rho}=0 \tag{h}
\end{equation*}
$$

Thus we see that our solutions are again of the form

$$
\begin{equation*}
\hat{\xi}(x)=A \sin \alpha x+B \cos \alpha x+C \sinh \alpha x+D \cosh \alpha x \tag{i}
\end{equation*}
$$

PROBLEM 11.9 (continued)

where now

$$
\begin{equation*}
\alpha=\left[\left(\omega^{2}-\frac{\mu_{o} H_{o}^{2}}{(a-b) b \rho}\right)\left(\frac{3 \rho}{E b^{2}}\right)\right]^{1 / 4} \tag{j}
\end{equation*}
$$

Since the boundary conditions for this problem are identical to that of problem 11.7, we can take the solutions from that problem, substituting the new value of α. From problem 11.7, the solution must satisfy

$$
\begin{equation*}
\cos \alpha \mathrm{L} \cosh \alpha \mathrm{~L}=1 \tag{k}
\end{equation*}
$$

The first resonance occurs when
or

$$
\alpha \mathrm{L} \approx \frac{3 \pi}{2}
$$

$$
\begin{equation*}
\omega^{2}=\frac{\left(\frac{3 \pi}{2}\right)^{4}\left(\frac{E b^{2}}{3 \rho}\right)}{L^{4}}+\frac{\mu_{0} H_{o}^{2}}{(a-b) b \rho} \tag{l}
\end{equation*}
$$

Part c
The resonant frequencies are thus shifted upward due to the stiffening effect of the constant flux constraint.

Part d
We see that, no matter what the values of the system parameters $\omega^{2}>0$, so ω will always be real, and thus stable. This is expected as the constant flux constraintimposes aforce which opposes the motion.

PROBLEM 11.10

Part a

We choose a coordinate system as in Fig. 11.4.12, centered at the right end of the rod. Because $\frac{d}{D}=\frac{1}{10}$, we can neglect fringing and consider the right end of the rod as a capacitor plate. Also, since $\frac{D}{\ell}=\frac{1}{10}$, we can assume that the electrical force acts only at $x_{1}=0$. Thus, the boundary conditions at $x_{1}=0$ are
$-\int^{b} T_{21} D d x_{2}+f^{e}=0$
where $\mathrm{T}_{21}^{=\mathrm{b}}=\frac{\left(\mathrm{x}_{2}^{2}-\mathrm{b}^{2}\right)}{2} \mathrm{E} \frac{\partial^{3} \xi}{\partial \mathrm{x}_{1}^{3}} \quad$ (Eq. 11.4.21)
since the electrical force, f^{e}, must balance the shear stress T_{21} to keep the rod in equilibrium,

PROBLEM 11.10 (continued)
and

$$
\begin{equation*}
T_{1: 1}(0)=-x_{2} E \frac{\partial^{2} \xi}{\partial x_{1}^{2}}(0)=0 \tag{b}
\end{equation*}
$$

since the end of the rod is free of normal stresses. At $x_{1}=-\ell$, the rod is clamped so

$$
\begin{equation*}
\xi(-\ell)=0 \tag{c}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{1}(-\ell)=-x_{2} \frac{\partial \xi}{\partial x_{1}}(-\ell)=0 \tag{d}
\end{equation*}
$$

We use the Maxwell stress tensor to calculate the electrical force to be

$$
\begin{align*}
f^{e} & =\frac{\varepsilon A}{2}\left[\frac{\left(v_{o}+v_{s}\right)^{2}}{[d-\xi(0)]^{2}}-\frac{\left(v_{s}-v_{o}\right)^{2}}{[d+\xi(0)]^{2}}\right] \tag{e}\\
& \approx \frac{2 \varepsilon A v_{o}}{d^{2}}\left[v_{s}+\frac{v_{o} \xi(0)}{d}\right]
\end{align*}
$$

The equation of motion of the beam is (example 11.4.4)

$$
\begin{equation*}
\frac{\partial^{2} \xi}{\partial t^{2}}+\frac{E b^{2}}{3 \rho} \frac{\partial^{4} \xi}{\partial x_{1}^{4}}=0 \tag{f}
\end{equation*}
$$

We write the solution to Eq. (f) in the form

$$
\begin{equation*}
\xi(x, t)=\operatorname{Re} \hat{\xi}(x) e^{j \omega t} \tag{g}
\end{equation*}
$$

where

$$
\hat{\xi}(x)=A_{1} \sin \alpha x+A_{2} \cos \alpha x+A_{3} \sinh \alpha x+A_{4} \cosh \alpha x
$$

with

$$
a=\left[\omega^{2}\left(\frac{3 \rho}{E b^{2}}\right)\right]^{1 / 4}
$$

Applying the four boundary conditions, Eqs. (a), (b), (c) and (d), we obtain the equations
$-A_{1} \sin \alpha \ell+A_{2} \cos \alpha \ell-A_{3} \sinh \alpha \ell+A_{4} \cosh \alpha L=0$
$A_{1} \cos \alpha l+A_{2} \sin \alpha l+A_{3} \cosh \alpha l-A_{4} \sinh \alpha l=0$
(h)
$-\frac{2}{3} b^{3} D E \alpha^{3} A_{1}+\frac{2 \varepsilon_{0} A V_{o}^{2}}{d^{3}} A_{2}+\frac{2}{3} b^{3} D E \alpha^{3} A_{3}+\frac{2 \varepsilon_{0} A V_{o}^{2}}{d^{3}} A_{4}=-\frac{2 \varepsilon_{0} A V_{o} \hat{v}_{S}}{d^{2}}$

PROBLEM 11.10 (continued)
Now $i_{s}=\frac{d q_{s}}{d t}$
(i)
where $\quad q_{s}=\frac{\varepsilon_{0} A}{d-\xi(0)}\left(v_{0}+v_{s}\right)+\frac{\varepsilon_{0} A\left(v_{s}-v_{0}\right)}{d+\xi(0)}$

$$
\begin{equation*}
\approx \frac{2 \varepsilon_{0} A v_{S}}{d}+\frac{2 \varepsilon_{0} A V_{o}}{d^{2}} \xi(0) \tag{j}
\end{equation*}
$$

Therefore

$$
\hat{i}_{s}=j \omega \frac{2 \varepsilon_{0} A}{d}\left[\hat{v}_{s}+\frac{v_{o}}{d} \hat{\xi}(0)\right]
$$

(k)
where

$$
\hat{\xi}(0)=A_{2}+A_{4}
$$

We use Cramer's rule to solve Eqs. (h) for A_{2} and A_{4} to obtain:
$A_{2}=A_{4}=\frac{-\frac{\varepsilon_{0} A V_{0} \hat{v}_{s}}{d^{2}}[\cos \alpha \ell \sinh \alpha \ell-\sin \alpha \ell \cosh \alpha \ell]}{\frac{2}{3} b^{3} \alpha^{3} D E(1+\cos \alpha l \cosh \alpha \ell)+\frac{{ }^{2} \varepsilon_{0}{A V_{0}}^{2}}{d^{3}}(\cos \alpha \ell \sinh \alpha \ell-\sin \alpha l \cosh \alpha l)}$
Thus, from Eq. (k) we obtain
$Z(j \omega)=\frac{d}{j \omega 2 \varepsilon_{0} A}\left[1+\frac{3 \varepsilon_{0} A V_{o}^{2}}{d^{3}(\alpha b)^{3} E D} \frac{(\cos \alpha \ell \sinh \alpha \ell-\sin \alpha \ell \cosh \alpha \ell)}{(1+\cos \alpha l \cosh \alpha \ell)}\right]$
(m)

Part b
We define a function $g(\alpha \ell)$ such that Eq. (m) has a zero when

PROBLEM 11.10 (Continued)

$(\alpha \mathrm{L})^{3} g(\alpha L)=\frac{(1+\cosh \alpha \ell \cos \alpha \ell)(\alpha \ell)^{3}}{\sin \alpha \ell \cosh \alpha \ell-\cos \alpha \ell \sinh \alpha \ell}=\frac{3 l^{3} V_{0}^{2} A \varepsilon_{0}}{D E b^{3} d^{3}}$
(n)

Substituting numerical values, we obtain

$$
\frac{3 \ell^{3} \mathrm{v}_{\mathrm{o}}^{2} \mathrm{~A} \varepsilon_{0}}{\mathrm{DEb}^{3} \mathrm{~d}^{3}} \approx \frac{3 \times 10^{-3}\left(10^{6}\right) 10^{-4}\left(8.85 \times 10^{-12}\right)}{10^{-2}\left(2.2 \times 10^{11}\right) 10^{-9} 10^{-9}} \approx 1.2 \times 10^{-3}
$$

(o)

In Figure 1, we plot $(\alpha \ell)^{3} g(\alpha \ell)$ as a function of $\alpha \ell$. We see that the solution to Eq. (n) first occurs when $(\alpha l)^{3} g(\alpha l) \approx 0$. Thus, the solution is approximately $\alpha \ell=1.875$

Figure 1

PROBLEM 11.10 (Continued)

From Eq. (g) $\quad 1 / 4$
$\alpha \ell=\left[\omega^{2} \frac{3 \rho}{\mathrm{~Eb}^{2}}\right]^{4} \quad \ell=1.875$
Solving for ω, we obtain
$\omega \approx 1080 \mathrm{rad} / \mathrm{sec}$.
(p)

Part c
The input impedance of a series LC circuit is

$$
\begin{equation*}
Z(j \omega)=\frac{1-L C \omega^{2}}{j \omega C} \tag{q}
\end{equation*}
$$

Thus the impedance has a zero when

$$
\begin{equation*}
\omega_{0}^{2}=\frac{1}{L C} \tag{r}
\end{equation*}
$$

We let $\omega=\omega_{0}+\Delta \omega$, and expand
(q) in a Taylor series around ω_{0} to obtain

$$
\begin{equation*}
Z(j \omega) \approx+j \frac{2 \Delta \omega}{C \omega_{0}^{2}}=+2 j L \Delta \omega \tag{s}
\end{equation*}
$$

(m) can be written in the form

$$
\begin{array}{ll}
Z(j \omega)=\frac{1}{2 j \omega C_{o}}[1-f(\omega)] & \text { where } f\left(\omega_{0}\right)=1 \tag{t}\\
\text { and } C_{o}=\frac{\varepsilon_{0} A}{d}
\end{array}
$$

For small deviations around ω_{0}

$$
\left.Z(j \omega) \approx \frac{j}{2 \omega C_{0}} \frac{\partial f}{\partial \omega}\right|_{\omega_{0}} \Delta \omega
$$

Thus, from (q), (r) (s) and (t), we obtain the relations

$$
2 L=\left.\frac{1}{2 \omega C_{0}} \frac{\partial \mathrm{f}}{\partial \omega}\right|_{\omega_{0}}
$$

(u)
and

$$
\begin{equation*}
C=\frac{1}{\omega_{0}^{2} L} \tag{v}
\end{equation*}
$$

now $\quad f(\omega)=\frac{K}{(\alpha \ell)^{3} g(\alpha \ell)}$
(w)
where $K=\frac{3 \ell^{3} \varepsilon_{0} A V_{0}{ }^{2}}{\mathrm{~d}^{3}\left(\mathrm{EDb}^{3}\right)}=1.2 \times 10^{-3}$

PROBLEM 11.10 (Continued)
and $\mathrm{g}(\alpha \ell)=\frac{1+\cos \alpha \ell \cosh \alpha \ell}{\sin \alpha \ell \cosh \alpha \ell-\cos \alpha \ell \sinh \alpha \ell}$
Thus, we can write

$$
\left.\frac{d f(\omega)}{d \omega}\right|_{\omega_{0}}=\left\{\frac{d}{d(\alpha l)}\left[\frac{K}{(\alpha l)^{3} g(\alpha l)}\right] \frac{d(\alpha l)}{d \omega}\right\}_{\omega_{0}}
$$

(y)

Now from (g),

$$
\begin{equation*}
\left.\frac{d(\alpha \ell)}{d \omega}\right|_{\omega_{0}}=\left(\frac{3 \rho}{E b^{2}}\right)^{1 / 4} \frac{\ell}{2 \omega_{0}^{1 / 2}} \tag{z}
\end{equation*}
$$

and
$\frac{d}{d(\alpha l)}\left[\frac{K}{(\alpha l)^{3} g(\alpha l)}\right]_{\omega_{0}}=\left.\frac{-K}{\left[(\alpha l)^{3} g(\alpha l)\right]^{2}} \frac{d}{d(\alpha l)}\left[(\alpha l)^{3} g(\alpha l)\right]\right|_{\omega_{0}}$

$$
\begin{equation*}
\approx-\left.\frac{1}{\mathrm{~K}} \frac{\mathrm{~d}}{\mathrm{~d}(\alpha l)}\left[(\alpha \ell)^{3} \mathrm{~g}(\alpha \ell)\right]\right|_{\omega_{0}} \tag{aa}
\end{equation*}
$$

since at $\omega=\omega_{0}$

$$
(\alpha l)^{3} g(\alpha l)=K .
$$

(bb)
Continuing the differentiating in (aa), we finally obtain

$$
\begin{aligned}
\left.\frac{d}{d(\alpha l)}\left[\frac{(\alpha l .)^{3} g(\alpha l)}{-K}\right]\right|_{\omega_{0}} & =-\frac{1}{K}\left[g(\alpha l) 3(\alpha l)^{2}+(\alpha l)^{3} \frac{d}{d(\alpha l)} g(\alpha l)\right]_{\omega_{0}} \\
& =\left.\frac{-3}{\alpha l}\right|_{\omega_{0}}-\left.\frac{(\alpha l)^{3}}{K} \frac{d}{d(\alpha l)} g(\alpha l)\right|_{\omega_{0}}
\end{aligned}
$$

Now
$\frac{d}{d(\alpha \ell)} g(\alpha \ell)=\frac{-\sin \alpha \ell \cosh \alpha \ell+\cos \alpha \ell \sinh \alpha \ell}{(\sin \alpha l \cosh \alpha \ell-\cos \alpha \ell \sinh \alpha \ell)}$
$\frac{-(1+\cos \alpha \ell \cosh \alpha \ell)(+\cos \alpha \ell \cosh \alpha \ell+\sin \alpha \ell \sinh \alpha \ell+\sin \alpha \ell \sinh \alpha \ell-\cos \alpha \ell \cosh \alpha \ell)}{(\sin \alpha \ell \cosh \alpha \ell-\cos \alpha \ell \sinh \alpha \ell)}$
$=-1-\frac{2 g(\alpha \ell)(\sin \alpha \ell \sinh \alpha \ell)}{(\sin \alpha \ell \cosh \alpha \ell-\cos \alpha \ell \sinh \alpha \ell)}$

PROBLEM 11.10 (Continued)

Substituting numerical values into the second term of (cc), we find it to have value much less than one at $\omega=\omega_{0}$.
Thus,

$$
\frac{d}{d(\alpha \ell)} g(\alpha \ell) \quad \approx-1
$$

Thus, using (y), (z), (aa) (bb) and (dd), we have
$\left.\frac{d f}{d \omega}\right|_{\omega_{0}} \approx\left(\frac{3 \rho}{E b^{2}}\right)^{1 / 4} \frac{\ell}{2 \omega_{0}^{1 / 2}}\left[-\left.\frac{3}{a \ell}\right|_{\omega_{0}}+\left.\frac{(\alpha \ell)^{3}}{K}\right|_{\omega_{0}}\right] \approx 4.8$

Thus, from (v) and (w)
$\mathrm{L} \approx \frac{4.8 \times 10^{-3}}{4(1080)\left(8.85 \times 10^{-12}\right)\left(10^{-4}\right)}=1.25 \times 10^{9}$ henries
and
C $\approx \frac{1}{1.25 \times 10^{9}(1080)^{2}}=6.8 \times 10^{-16}$ farads.

PROBLEM 11.11
From Eq. (11.4.29), the equation of motion is

$$
\rho \frac{\partial^{2} \delta_{3}}{\partial t^{2}}=G\left(\frac{\partial^{2} \delta_{3}}{\partial x_{1}^{2}}+\frac{\partial^{2} \delta_{3}}{\partial x_{2}^{2}}\right)
$$

(a)

We let

$$
\begin{equation*}
\delta_{3}=\operatorname{Re} \hat{\delta}\left(x_{2}\right) e^{j\left(\omega t-k x_{1}\right)} \tag{b}
\end{equation*}
$$

Substituting this assumed solution into the equation of motion, we obtain

$$
\begin{equation*}
-\rho \omega^{2} \hat{\delta}=G\left(-k^{2} \hat{\delta}+\frac{\partial^{2} \hat{\delta}}{\partial x_{2}^{2}}\right) \tag{c}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial^{2} \hat{\delta}}{\partial x_{2}^{2}}+\left(\frac{\rho w^{2}}{G}-k^{2}\right) \hat{\delta}=0 \tag{d}
\end{equation*}
$$

If we let $\beta^{2}=\frac{\rho \omega^{2}}{G}-k^{2}$
the solutions for $\hat{\delta}$ are:

$$
\begin{equation*}
\hat{\delta}\left(x_{2}\right)=A \sin \beta x_{2}+B \cos \beta x_{2} \tag{f}
\end{equation*}
$$

The boundary conditions are

$$
\begin{equation*}
\hat{\delta}(0)=0 \quad \text { and } \quad \hat{\delta}(d)=0 \tag{g}
\end{equation*}
$$

This implies that $B=0$
and that $\quad \beta d=n \pi$.
Thus, the dispersion relation is

$$
\begin{equation*}
\omega^{2} \frac{\rho}{\mathrm{G}}-\mathrm{k}^{2}=\left(\frac{\mathrm{n} \pi}{\mathrm{~d}}\right)^{2} \tag{h}
\end{equation*}
$$

Part b
The sketch of the dispersion relation is identical to that of Fig. 11.4.19. However, now the $n=0$ solution is trivial, as it implies that

$$
\hat{\delta}\left(x_{2}\right)=0
$$

Thus, there is no principal mode of propagation.

PROBLEM 11.12

From Eq. (11.4.1), the equation of motion is

$$
\begin{equation*}
\rho \frac{\partial^{2} \delta}{\partial t^{2}}=(2 G+\lambda) \nabla(\nabla \cdot \delta)-G \nabla \times(\nabla \times \delta) \tag{a}
\end{equation*}
$$

We consider motions

$$
\begin{equation*}
\delta=\delta_{\theta}(r, z, t) \bar{i}_{\theta} \tag{b}
\end{equation*}
$$

Thus, the equation of motion reduces to

$$
\rho \frac{\partial^{2} \delta_{\theta}}{\partial t^{2}}-G\left[\frac{\partial^{2} \delta_{\theta}}{\partial z^{2}}+\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r} r \delta_{\theta}\right)\right]=0
$$

(c)

We assume solutions of the form

$$
\begin{equation*}
\delta_{\theta}(r, z, t)=\operatorname{Re} \hat{\delta}(r) e^{j(\omega t-k z)} \tag{d}
\end{equation*}
$$

which, when substituted into the equation of motion, yields

$$
\begin{equation*}
\frac{\partial}{\partial r}\left[\frac{1}{r} \frac{\partial}{\partial r} \hat{r} \hat{\delta}(r)\right]+\left(\frac{\rho \omega^{2}}{G}-k^{2}\right) \hat{\delta}(r)=0 \tag{e}
\end{equation*}
$$

From page 207 of Ramo, Whinnery and Van Duzer, we recognize solutions to this equation as

$$
\begin{equation*}
\hat{\delta}(r)=A J_{1}\left[\left(\frac{\rho \omega^{2}}{G}-k^{2}\right)^{1 / 2} r\right]+B N_{1}\left[\left(\frac{\rho \omega^{2}}{G}-k^{2}\right)^{1 / 2} r\right] \tag{f}
\end{equation*}
$$

On page 209 of this reference there are plots of the Bessel functions J_{2} and N_{1}. We must have $B=0$ as at $r=0, N_{1}$ goes to $-\infty$. Now, at $r=R$

$$
\begin{equation*}
\hat{\delta}(R)=0 \tag{g}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
J_{1}\left[\left(\frac{\rho w^{2}}{G}-k^{2}\right)^{1 / 2} \quad R\right]=0 \tag{h}
\end{equation*}
$$

If we denote α_{i} as the zeroes of J_{1}, i.e.

$$
J_{1}\left(\alpha_{i}\right)=0
$$

we have the dispersion relation as

$$
\begin{equation*}
\frac{\rho}{G} \omega^{2}-k^{2}=\frac{\alpha_{1}^{2}}{R^{2}} \tag{i}
\end{equation*}
$$

