MIT OpenCourseWare
http://ocw.mit.edu
Solutions Manual for Electromechanical Dynamics

For any use or distribution of this solutions manual, please cite as follows:
Woodson, Herbert H., James R. Melcher. Solutions Manual for Electromechanical Dynamics. vols. 1 and 2. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-NonCommercial-Share Alike

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

ROTATING MACHINES

PROBLEM 4.1

Part a
With stator current acting alone the situation is as depicted at the right. Recognizing by symmetry that $H_{r s}(\psi+\pi)=-H_{r s}(\psi)$ we use the contour shown and Ampere's law to get

$$
2 H_{r s}(\psi) g=\int_{\psi}^{\psi+\pi N_{s} i_{s}}\left[\frac{N_{s}(R+g)}{2(i n} \psi^{\prime}\right](R+g) d \psi^{\prime}=N_{s} i_{s} \cos \psi
$$

from which

$$
H_{r s}(\psi)=\frac{N_{s} 1_{s} \cos \psi}{2 g}
$$

and

$$
B_{r s}(\psi)=\frac{\mu_{0} N_{s} £_{s} \cos \psi}{2 g}
$$

Part b
Following the same procedure for rotor excitation alone we obtain

$$
B_{r r}(\psi)=\frac{\mu_{0} N_{r} r_{r} \cos (\psi-\theta)}{2 g}
$$

Note that this result is obtained from part (a) by making the replacements

$$
\begin{aligned}
& N_{s} \rightarrow N_{r} \\
& \mathbf{i}_{s} \rightarrow \mathbf{i}_{r} \\
& \psi \rightarrow(\psi-\theta)
\end{aligned}
$$

Part c
The flux density varies around the periphery and the windings are distributed, thus a double integration is required to find inductances, whether they are found from stored energy or from flux linkages. We will use flux linkages.

The total radial flux density is

$$
B_{r}=B_{r s}+B_{r r}=\frac{\mu_{0}}{2 g}\left[N_{s} i_{s} \cos \psi+N_{r} i_{r} \cos (\psi-\theta)\right]
$$

ROTATING MACHINES

PROBLEM 4.1 (Continued)
Taking first the elemental coil on the stator having sides of angular span $d \psi$ at positions ψ and $\psi+\pi$ as illustrated. This coil links an amount of flux

number of turns in elemental coll
flux linking one turn of elemental coil

$$
\begin{aligned}
& d \lambda_{s}=-\frac{\mu_{0} N_{s}(R+g) \ell}{4 \not 2 g} \sin \psi d \psi \int_{\psi}^{\psi+\pi}\left[N_{s} 1_{s} \cos \psi^{\prime}+N_{r} 1_{r} \cos \left(\psi^{\prime}-\theta\right)\right] d \psi^{\prime} \\
& d \lambda_{s}=\frac{\mu_{0} N_{s}(R+g) \ell}{2 g} \sin \psi\left[N_{s} 1_{s} \sin \psi+N_{r^{\prime}}{ }^{1} \sin (\psi-\theta)\right] d \psi
\end{aligned}
$$

To find the total flux linkage with the stator coil we add up all of the contributions

$$
\begin{aligned}
& \lambda_{s}=\frac{\mu_{0} N_{s}(R+g) \ell}{2 g} \int_{0}^{\pi} \sin \psi\left[N_{s} i_{s} \sin \psi+N_{r} i_{r} \sin (\psi-\theta)\right] d \psi \\
& \lambda_{s}=\frac{\mu_{0} N_{s}(R+g) \ell}{2 g}\left[\frac{\pi}{2} N_{s} i_{s}+\frac{\pi}{2} N_{r} i_{r} \cos \theta\right]
\end{aligned}
$$

This can be written as

$$
\lambda_{s}=L_{s} i_{s}+M i_{r} \cos \theta
$$

where

$$
\begin{aligned}
& L_{s}=\frac{m \mu_{0} N_{s}^{2} R l}{42 g} \\
& M=\frac{m \mu_{0} N_{s} N_{r} R l}{42 g}
\end{aligned}
$$

and we have written $R+g \approx R$ because $g \ll R$.
When a similar process is carried out for the rotor winding, it yields

$$
\lambda_{r}=L_{r} i_{r}+M i_{s} \cos \theta
$$

where

$$
L_{r}=\frac{\pi \mu_{0} N_{r}^{2} R \ell}{4 \mathrm{IN}^{2} \mathrm{~g}}
$$

and M is the same as calculated before.

PROBLEM 4.2

Part a

Application of Ampere's law

 with the contour shown and use of the symmetry condition$H_{r s}(\psi+\pi)=-H_{r s}(\psi)$ yields
$2 \mathrm{H}_{\mathrm{rs}}(\psi) \mathrm{g}=\mathrm{N}_{\mathrm{s}} 1_{\mathrm{s}}\left(1-\frac{2 \psi}{\pi}\right) ;$ for $0<\psi<\pi$
$2 H_{r s}(\psi) g=N_{s} i_{s}\left(-3+\frac{2 \psi}{\pi}\right)$; for $\pi<\psi<2 \pi$

The resulting flux density is sketched below

Part b

The same process applied to excitation of the rotor winding yields

PROBLEM 4.2 (Continued)

Part c

For calculating inductances it will be helpful to have both flux densities and turn densities in terms of Fourier series. The turn density on the stator is expressible as

$$
n_{s}=\frac{4 N_{s}}{\pi^{2}(R+g)} \sum_{\text {nodd }} \frac{1}{n} \sin n \psi
$$

and the turn density on the rotor is

$$
n_{r}=\frac{4 N}{\pi^{2} R} \sum_{\text {nodd }} \frac{1}{n} \sin (\psi-\theta)
$$

and the flux densities are expressible as

$$
\begin{aligned}
& B_{r s}=\sum_{n o d d} \frac{4 \mu_{0} N_{s} i_{s}}{\pi^{2} g_{n}^{2}} \cos n \psi \\
& B_{r r}=\sum_{\text {nodd }} \frac{4 \mu_{0} N_{r} r^{i} r}{\pi^{2} g^{2}} \cos n(\psi-\theta)
\end{aligned}
$$

The total radial flux density is

$$
B_{r}=B_{r s}+B_{r r}
$$

First calculating stator flux
linkages, we first consider the elemental coil having sides $\mathrm{d} \psi$

long and π radians apart

$$
d \lambda_{s}=\underbrace{n_{s}(R+g) d \psi}_{\substack{\text { number of } \\
\text { turns }}} \underbrace{\left[-\int_{\psi}^{\psi+\pi} B_{r}\left(\psi^{\prime}\right)(R+g) l d \psi^{\prime}\right]}_{\begin{array}{c}
\text { flux linking one } \\
\text { turn of elemental } \\
\text { coil }
\end{array}}
$$

Substitution of series for B_{r} yields

$$
\mathrm{d} \lambda_{s}=\mathrm{n}_{\mathrm{s}}(\mathrm{R}+\mathrm{g})^{2} \ell \mathrm{~d} \psi\left[\sum_{\text {nodd }} \frac{8 \mu_{0} \mathrm{~N}_{\mathrm{s}} 1_{s}}{\pi^{2} \mathrm{gn}^{3}} \sin n \psi+\sum_{\text {nodd }} \frac{8 \mu_{0} N_{r^{1}} r^{1}}{\pi^{2} \mathrm{gn}^{3}} \sin n(\psi-\theta)\right]
$$

The total flux linkage with the stator coil is

$$
\lambda_{s}=\frac{32 \mu_{0} N_{s}(R+g) \ell}{\pi^{4} g} \int_{0}^{\pi}\left[\sum_{n o d d} \frac{1}{n} \operatorname{sinn} \psi\right]\left[\sum_{n o d d} \frac{N_{s} i_{s}}{n^{3}} \sin n \psi+\sum_{\text {nodd }} \frac{N_{r^{1}} r^{3}}{n^{3}} \sin n(\psi-\theta)\right] d \psi
$$

ROTATING MACHINES

PROBLEM 4.2 (Continued)
Recognition that

$$
\int_{0}^{\pi} \sin n \psi \sin m(\psi-\theta) d \psi=0 \text { when } m \neq n
$$

simplifies the work in finding the solution

$$
\lambda_{s}=\frac{32 \mu_{0} N_{s}(R+g) \ell}{\pi^{4} g} \sum_{n o d d}\left(\frac{\pi N_{s} i_{s}}{2 n^{4}}+\frac{\pi N_{r} i_{r}}{2 n^{4}} \cos n \theta\right)
$$

This can be written in the form

$$
\lambda_{s}=L_{s} 1_{s}+\sum_{n o d d} M_{n} \cos n \theta 1_{r}
$$

where

$$
\begin{aligned}
& L_{s}=\frac{16 \mu_{0} N_{s}^{2} R \ell}{\pi^{3} g} \sum_{n o d d} \frac{1}{n^{4}} \\
& M_{n}=\frac{16 \mu_{0} N_{s} N_{r} R \ell}{\pi^{3} g_{n}^{4}}
\end{aligned}
$$

In these expressions we have used the fact that $g \ll R$ to write $R+g \approx R$.
A similar process with the rotor winding yields

$$
\lambda_{r}=L_{r} i_{r}+\sum_{\text {nodd }} M_{n} \cos n \theta i_{s}
$$

where

$$
L_{r}=\frac{16 \mu e_{0}^{-d} s^{2} R \ell}{\pi^{3} g} \sum_{\text {nodd }} \frac{1}{n^{4}}
$$

and M_{n} is as given above.
PROBLEM 4.3
With reference to the solution of Prob. 4.2 , if the stator winding is sinusoidally distributed, λ_{s} becomes

$$
\lambda_{s}=\frac{32 \mu_{0} N_{s}(R+g) \ell}{\pi^{4} g} \int_{0}^{\pi} \sin \psi\left[N_{s} 1_{s} \sin \psi+\sum_{\operatorname{nodd}} \frac{N_{r_{r}} r^{3}}{n^{3}} \sin n(\psi-\theta)\right] d \psi
$$

Because $\int_{0}^{\pi} \sin \psi \sin n(\psi-\theta)=0$ when $n \neq 1$

$$
\lambda_{s}=\frac{32 \mu_{0} N_{s}(R+g) \ell}{\pi^{4} g} \int_{0}^{\pi} \sin \psi\left[N_{s} i_{s} \sin \psi+N_{r} 1_{r} \sin (\psi-\theta)\right] d \psi
$$

and the mutual inductance will contain no harmonic terms.
Similarly, if the rotor winding is sinusoidally distributed,

PROBLEM 4.3 (Continued)

$$
\lambda_{s}=\frac{32 \mu_{0} N_{s}(R+g) \ell}{\pi^{4} g} \int_{0}^{\pi}\left[\sum_{n o d d} \frac{1}{n} \sin n \psi\right]\left[\sum_{n 6 d d} \frac{N_{s} i_{s}}{n^{3}} \sin n \psi+N_{r} i_{r} \sin (\psi-\theta)\right] d \psi
$$

Using the orthogonality condition

$$
\begin{aligned}
& \int_{0}^{\pi} \sin n \psi \sin (\psi-\theta) d \psi=0 \text { when } n \neq 1 \\
\lambda_{s} & =\frac{32 \mu_{0} N_{s}(R+g) \ell}{\pi^{4} g} \int_{0}^{\pi}\left[\sum_{n o d d}^{n^{4}} \frac{N_{g} 1_{s}}{\left.\sin ^{2} n \psi+N_{r} i_{r} \sin \psi \sin (\psi-\theta)\right] d \psi}\right.
\end{aligned}
$$

and the mutual inductance once again contains only a space fundamental term. PROBLEM 4.4

Part a

The open-circuit stator voltage is

$$
\begin{aligned}
& v_{s}=\frac{d \lambda_{s}}{d t}=\frac{d}{d t}\left[I \sum_{n o d d} \frac{M_{0}}{n^{4}} \cos n \omega t\right] \\
& \mathbf{v}_{s}(t)=-\sum_{\text {nodd }} \frac{\omega M_{0} I}{n^{3}} \sin n \omega t
\end{aligned}
$$

Part b

$$
\frac{V_{s n}}{V_{s 1}}=\frac{1}{n^{3}} ; \frac{V_{s 3}}{V_{s 1}}=\frac{1}{27} \approx 4 \text { percent }
$$

This indicates that uniform turn density does not yield unreasonably high values of harmonics.

ROTATING MACHINES

PROBLEM 4.4 (Continued)
Part C

PROBLEM 4.5
Given electrical terminal relations are

$$
\begin{aligned}
& \lambda_{s}={L_{s}}_{i_{s}}+M i_{r} \cos \theta \\
& \lambda_{r}=M i_{s} \cos \theta+L_{r} i_{r}
\end{aligned}
$$

System is conservative so energy or coenergy is independent of path. Select currents and θ as independent variables and use coenergy (see Table 3.1).
Assemble system first mechanically, then electrically so torque is not needed in calculation of coenergy. Selecting one of many possible paths of integration for i_{s} and i_{r} we have

ROTATING MACHINES

PROBLEM 4.5 (Continued)

$$
\begin{aligned}
& W_{m}^{\prime}\left(i_{s}, i_{r}, \theta\right)=\int_{0}^{i} \lambda_{s}\left(i_{s}^{\prime}, 0, \theta\right) d i_{s}^{\prime}+\int_{0}^{i_{r}} \lambda_{r}\left(i_{s}, i_{r}^{\prime}, \theta\right) d i_{r}^{\prime} \\
& W_{m}^{\prime}\left(i_{s}, i_{r}, \theta\right)=\frac{1}{2} L_{s} i_{s}^{2}+M i_{r} i_{s} \cos \theta+\frac{1}{2} L_{r} i_{r}^{2} \\
& T^{e}=\frac{\partial W_{m}^{\prime}\left(i_{s}, i_{r}, \theta\right)}{\partial \theta}=-M i_{r} i_{s} \cos \theta
\end{aligned}
$$

PROBLEM 4.6
The conditions existing at the time the rotor winding terminals are shortcircuited lead to the constant rotor winding flux linkages

$$
\lambda_{r}=M I_{0}
$$

This constraint leads to a relation between i_{r} and $i_{s}=1(t)$

$$
\begin{aligned}
& M I_{0}=M i_{s} \cos \theta+L_{r} i_{r} \\
& i_{r}=\frac{M}{L_{r}}\left[I_{0}-1(t) \cos \theta\right]
\end{aligned}
$$

The torque equation (4.1.8) is valid for any terminal constraint, thus

$$
T^{e}=-M 1_{r^{\prime}} i_{s} \cos \theta=-\frac{M^{2}}{L_{r}} i(t)\left[I_{0}-i(t) \cos \theta\right] \sin \theta
$$

The equation of motion for the shaft is then

$$
J \frac{d^{2} \theta}{d t^{2}}=-\frac{M^{2}}{L_{r}} 1(t)\left[I_{0}-i(t) \cos \theta\right] \sin \theta
$$

PROBLEM 4.7

Part a

Coenergy is

$$
\begin{aligned}
& W_{m}^{\prime}\left(i_{s}, i_{r}, \theta\right)=\frac{1}{2} L_{s} i_{s}^{2}+\frac{1}{2} L_{r_{r}}{ }^{2}+L_{s r}(\theta) i_{s} 1_{r} \\
& T^{e}=\frac{\partial W_{m}^{\prime}\left(i_{s}, 1_{r}, \theta\right)}{\partial \theta}=i_{s} i_{r} \frac{d L_{s r}(\theta)}{d \theta} \\
& T^{e}=-i_{s} i_{r}\left[M_{1} \sin \theta+3 M_{3} \sin 3 \theta\right]
\end{aligned}
$$

Part b
With the given constraints

$$
T^{e}=-I_{s} I_{r} \sin \omega_{s} t \sin \omega_{r} t\left[M_{1} \sin \left(\omega_{m} t+\gamma\right)+3 M_{3} \sin 3\left(\omega_{m} t+\gamma\right)\right]
$$

PROBLEM 4.7 (Continued)
Repeated application of trigonometric identities leads to:

$$
\begin{aligned}
& T^{e}=-\frac{M_{1} I_{s} I_{r}}{4}\{ \left\{\sin \left[\left(\omega_{m}+\omega_{s}-\omega_{r}\right) t+\gamma\right]+\sin \left[\left(\omega_{m}-\omega_{s}+\omega_{r}\right) t+\gamma\right]\right. \\
&\left.-\sin \left[\left(\omega_{m}+\omega_{s}+\omega_{r}\right) t+\gamma\right]-\sin \left[\left(\omega_{m}-\omega_{s}-\omega_{r}\right) t+\gamma\right]\right\} \\
&-\frac{3 M_{3} I_{s} I_{r}}{4}\left\{\sin \left[\left(3 \omega_{m}+\omega_{s}-\omega_{r}\right) t+3 \gamma\right]+\sin \left[\left(3 \omega_{m}-\omega_{s}+\omega_{r}\right) t+3 \gamma\right]\right. \\
&\left.-\sin \left[\left(3 \omega_{m}+\omega_{s}+\omega_{r}\right) t+3 \gamma\right]-\sin \left[\left(3 \omega_{m}-\omega_{s}-\omega_{r}\right) t+3 \gamma\right]\right\}
\end{aligned}
$$

To have a time-average torque, one of the coefficients of time must equal zero. This leads to the eight possible mechanical speeds

$$
\omega_{m}= \pm \omega_{s} \pm \omega_{r} \text { and } \omega_{m}= \pm \frac{\omega_{s} \pm \omega_{r}}{3}
$$

For

$$
\begin{aligned}
& \omega_{m}=+\left(\omega_{s}-\omega_{r}\right) \\
& T_{\text {avg }}^{e}=-\frac{M_{1} I_{s} I_{r}}{4} \sin \gamma
\end{aligned}
$$

For

$$
\begin{aligned}
& \omega_{m}= \pm\left(\omega_{s}+\omega_{r}\right) \\
& T_{a v g}^{e}=\frac{M_{1} I_{s} I_{r}}{4} \sin \gamma
\end{aligned}
$$

For

For

$$
\begin{aligned}
\omega_{\mathrm{m}} & = \pm \frac{\left(\omega_{s}-\omega_{r}\right)}{3} \\
T^{e} & =-\frac{3 M_{3} I_{s} I_{r}}{4} \sin 3 \gamma
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{m}= \pm \frac{\left(\omega_{s}+\omega_{r}\right)}{3} \\
& T_{a v g}^{e}=\frac{3 M_{3} I_{s} I_{r}}{4} \sin 3 \gamma
\end{aligned}
$$

PROBLEM 4.8
From 4.1 .8 and the given constraints the instantaneous torque is

$$
T^{e}=-I_{r} M \sin \omega_{r} t \cos \left(\omega_{m} t+\gamma\right)\left(I_{s 1} \sin \omega_{s} t+I_{s 3} \sin 3 \omega_{s} t\right)
$$

Repeated use of trigonometric identities leads to:

ROTATING MACHINES

PROBLEM 4.8 (Continued)

$$
\left.\left.\begin{array}{rl}
T^{e}=-\frac{I_{r} I_{s} 1^{M}}{4} & \left\{\cos \left[\left(\omega_{r}+\omega_{m}-\omega_{s}\right) t+\gamma\right]-\cos \left[\omega_{r}+\omega_{m}+\omega_{s}\right) t+\gamma\right] \\
& \left.+\cos \left[\left(\omega_{r}-\omega_{m}-\omega_{s}\right) t-\gamma\right]-\cos \left[\left(\omega_{r}-\omega_{m}+\omega_{s}\right) t-\gamma\right]\right\}
\end{array}\right\} \begin{array}{l}
-\frac{I_{r} I_{s} 3^{M}}{4}\left\{\cos \left[\left(\omega_{r}+\omega_{m}-3 \omega_{s}\right) t+\gamma\right]-\cos \left[\left(\omega_{r}+\omega_{m}+3 \omega_{s}\right) t+\gamma\right]\right.
\end{array}\right\}
$$

For a time-average torque one of the coefficients of t must be zero. This leads to eight values of ω_{m} :

$$
\omega_{m}= \pm \omega_{r} \pm \omega_{s} \text { and } \omega_{m}= \pm \omega_{r} \pm 3 \omega_{s}
$$

For

$$
\begin{aligned}
& \omega_{m}= \pm\left(\omega_{r}-\omega_{s}\right) \\
& T_{a v g}^{e}=-\frac{I_{r} I_{s I^{M}}}{4} \cos \gamma
\end{aligned}
$$

For

$$
\begin{aligned}
& \omega_{\mathrm{m}}= \pm\left(\omega_{r}+\omega_{s}\right) \\
& T_{\text {avg }}^{e}=\frac{I_{r} I_{s 1} M}{4} \cos \gamma
\end{aligned}
$$

For

$$
\begin{aligned}
& \omega_{m}= \pm\left(\omega_{r}-3 \omega_{s}\right) \\
& T_{a v g}^{e}=-\frac{I_{r} I_{s} 3^{M}}{4} \cos \gamma
\end{aligned}
$$

For

$$
\begin{aligned}
& \omega_{\mathrm{m}}= \pm\left(\omega_{r}+3 \omega_{\mathrm{s}}\right) \\
& \mathrm{T}_{\mathrm{avg}}^{\mathrm{e}}=\frac{\mathrm{I}_{\mathrm{r}} \mathrm{I}_{s 3^{M}}}{4} \cos \gamma
\end{aligned}
$$

PROBLEM 4.9
Electrical terminal relations are 4.1.19-4.1.22. For conservative system, coenergy is independent of path and if we bring system to its final mechanical configuration before exciting it electrically there is no contribution to the coenergy from the torque term. Thus, of the many possible paths of integration we choose one

PROBLEM 4.9 (Continued)

$$
\begin{aligned}
W_{m}^{\prime}\left(i_{a s}, i_{b s}, i_{a r}, i_{b r}, \theta\right) & =\int_{0}^{i_{a s}} \lambda_{a s}\left(i_{a s}^{\prime}, 0,0,0, \theta\right) d i_{a s}^{\prime} \\
& +\int_{0}^{i_{b s}} \lambda_{b s}\left(i_{a s}, i_{b s}^{\prime}, 0,0, \theta\right) d i_{b s}^{\prime} \\
& +\int_{0}^{i_{a r}} \lambda_{a r}\left(i_{a s}, i_{b s}, i_{a r}^{\prime}, 0, \theta\right) d i_{a r}^{\prime} \\
& +\int_{0}^{i_{b r} \lambda_{b r}\left(i_{a s}, i_{b s}, i_{a r}, i_{b r}^{\prime}, \theta\right) d i_{b r}^{\prime}}
\end{aligned}
$$

The use of 4.1.19-4.1.22 in this expression yields

$$
\begin{aligned}
W_{m}^{\prime} & =\int_{0}^{i} a s L_{s} i_{a s}^{\prime} i_{a s}^{\prime}+\int_{0}^{1_{b s}} L_{s} i_{b s}^{\prime} d i_{b s}^{\prime} \\
& +\int_{0}^{i} a r_{0}\left(L_{r} i_{a r}^{\prime}+M i_{a s} \cos \theta+M i_{b s} \sin \theta\right) d i_{a r}^{\prime} \\
& +\int_{0}^{i} b r_{\left(L_{r} i_{b r}^{\prime}-M i_{a s} \sin \theta+M i_{b s} \cos \theta\right) d i_{b r}^{\prime}}
\end{aligned}
$$

Evaluation of these integrals yields

$$
\begin{aligned}
W_{m}^{\prime} & =\frac{1}{2} L_{s} i_{a s}^{2}+\frac{1}{2} L_{s} i_{b s}^{2}+\frac{1}{2} L_{r} i_{a r}^{2}+\frac{1}{2} L_{r} i_{b r}^{2} \\
& +M i_{a s} i_{a r} \cos \theta+M i_{b s} i_{a r} \sin \theta \\
& -M i_{a s} i_{b r} \sin \theta+M i_{b s} i_{b r} \cos \theta
\end{aligned}
$$

The torque of electric origin is then (see Table 3.1)

$$
\begin{aligned}
& T^{e}=\frac{\partial W_{m}^{\prime}\left(1_{a s}, i_{b s}, 1_{a r}, 1_{b r}, \theta\right)}{\partial \theta} \\
& T^{e}=-M\left[i_{a s} i_{a r} \sin \theta-i_{b s} i_{a r} \cos \theta+i_{a s} i_{b r}^{\left.\cos \theta+1_{b s} i_{b r} \sin \theta\right]}\right.
\end{aligned}
$$

PROBLEM 4.10

Part a

Substitution of currents into given expressions for flux density

$$
\begin{aligned}
& B_{r}=B_{r a}+B_{r b} \\
& B_{r}=\frac{\mu_{0} N}{2 g}\left[I_{a} \cos \omega t \cos \psi+I_{b} \sin \omega t \sin \psi\right]
\end{aligned}
$$

ROTATING MACHINES

PROBLEM 4.10 (Continued)
Part b
Application of trigonometric identities and simplification yield.

$$
\begin{aligned}
B_{r}= & \frac{\mu_{0} N}{2 g}\left[\frac{I_{a}}{2} \cos (\omega t-\psi)+\frac{I_{a}}{2} \cos (\omega t+\psi)\right] \\
& \left.+\frac{I_{b}}{2} \cos (\omega t-\psi)-\frac{I_{b}}{2} \cos (\omega t+\psi)\right] \\
B_{r}= & \frac{\mu_{0} N}{4 g}\left[\left(I_{a}+I_{b}\right) \cos (\omega t-\psi)+\left(I_{a}-I_{b}\right) \cos (\omega t+\psi)\right]
\end{aligned}
$$

The forward wave is

$$
B_{r f}=\frac{\mu_{0} N\left(I_{a}+I_{b}\right)}{4 g} \cos (\omega t-\psi)
$$

For constant phase on the forward wave

$$
\begin{aligned}
& \omega t-\psi=\text { constant } \\
& \omega_{f}=\frac{d \psi}{d t}=\omega
\end{aligned}
$$

The backward wave is

$$
B_{r b}=\frac{\mu_{0} N\left(I_{a}-I_{b}\right)}{4 g} \cos (\omega t+\psi)
$$

For

$$
\begin{aligned}
& \omega t+\psi=\text { constant } \\
& \omega_{b}=\frac{d \psi}{d t}=-\omega
\end{aligned}
$$

Part c
The ratio of amplitudes is

$$
\begin{aligned}
& \frac{B_{r b m}}{B_{r f m}}=\frac{I_{a}-I_{b}}{I_{a}+I_{b}} \\
& \frac{B_{r b m}}{B_{r f m}} \rightarrow 0 \quad \text { as } \quad I_{a} \rightarrow I_{b}
\end{aligned}
$$

Part d
When $I_{b}=-I_{a}$

$$
\mathrm{B}_{r f}=0
$$

This has simply reversed the phase sequence.

PROBLEM 4.11

Part a

$$
\begin{gathered}
{ }^{B_{r}}=B_{r a}+B_{r b} \\
B_{r}=\frac{\mu_{0} N I}{2 g}[\cos \omega t \cos \psi+\sin (\omega t+\beta) \sin \psi]
\end{gathered}
$$

Part b

Using trigonometric identities

$$
\begin{aligned}
B_{r}= & \frac{\mu_{0} N I}{2 g}[\cos \omega t \cos \psi+\cos \beta \sin \omega t \sin \psi+\sin \beta \cos \omega t \sin \psi] \\
B_{r}= & \frac{\mu_{0} N I}{2 g}\left[\frac{1}{2} \cos (\omega t-\psi)+\frac{1}{2} \cos (\omega t+\psi)\right. \\
& +\frac{\cos \beta}{2} \cos (\omega t-\psi)-\frac{\cos \beta}{2} \cos (\omega t+\beta) \\
& \left.+\frac{\sin \beta}{2} \sin (\omega t+\psi)-\frac{\sin \beta}{2} \sin (\omega t-\psi)\right] \\
B_{r}=\frac{\mu_{0} N I}{4 g} & {[(1+\cos \beta) \cos (\omega t-\psi)-\sin \beta \sin (\omega t-\psi)} \\
& +(1-\cos \beta) \cos (\omega t+\psi)+\sin \beta \sin (\omega t+\psi)]
\end{aligned}
$$

Forward wave is

$$
B_{r f}=\frac{\mu_{0}^{N I}}{4 g}[(1+\cos \beta) \cos (\omega t-\psi)-\sin \beta \sin (\omega t-\psi)]
$$

For constant phase

$$
\omega t-\psi=\text { constant }
$$

and

$$
\omega_{f}=\frac{d \psi}{d t}=\omega
$$

Backward wave is

$$
B_{r b}=\frac{\mu_{0} N I}{4 g}[(1-\cos \beta) \cos (\omega t+\psi)+\sin \beta \sin (\omega t+\psi)]
$$

For constant phase

$$
\omega t+\psi=\text { constant }
$$

and

$$
\omega_{b}=\frac{d \psi}{d t}=-\omega
$$

ROTATING MACHINES

PROBLEM 4.11 (Continued)

Part c

The ratio of amplitudes is

$$
\frac{{ }^{B}{ }_{r b m}}{{ }^{B}{ }_{r f m}}=\frac{\sqrt{(1-\cos \beta)^{2}+\sin ^{2} \beta}}{\sqrt{(1+\cos \beta)^{2}+\sin ^{2} \beta}}=\sqrt{\frac{1-\cos \beta}{1+\cos \beta}}
$$

as $\beta \rightarrow 0, \frac{B_{r b m}}{B_{r f m}} \rightarrow 0$.
Part d
The forward wave amplitude will go to zero when $\beta=\pi$. The phase sequence has been reversed by reversing the phase of the current in the b-winding.

PROBLEM 4.12

Equation 4.1 .53 is

$$
p_{e}=v_{a s}{ }^{1} a s+v_{b s} 1_{b s}
$$

For steady state balanced conditions we can write

$$
\begin{aligned}
& \mathbf{i}_{\text {as }}=I \cos \omega t ; \quad i_{b s}=I \sin \omega t \\
& v_{\text {as }}=V \cos (\omega t+\phi) ; \quad v_{b e}=V \sin (\omega t+\phi)
\end{aligned}
$$

then

$$
\mathbf{p}_{\mathbf{e}}=V I[\cos \omega t \cos (\omega t+\phi)+\sin \omega t \sin (\omega t+\phi)]
$$

Using trigonometric identities

$$
\mathrm{p}_{\mathrm{e}}=\mathrm{VI} \cos \phi
$$

Referring to Fig. 4.1.13(b) we have the vector diagram

PROBLEM 4.12 (Continued)
From this figure it is clear that

$$
\omega \mathrm{L}_{s} \mathrm{I}_{\mathbf{s}} \cos \phi=-\mathrm{E}_{\mathrm{f}} \sin \delta
$$

(remember that $\delta<0$)
Then $p_{e}=-\frac{V E_{f}}{\omega L_{s}} \sin \delta$
which was to be shown.
PROBLEM 4.13
For the generator we adopt the notation for one phase of the armature circuit (see Fig. 4.1.12 with current convention reversed)

$$
j X=j \omega L_{s}
$$

The vector diagram is then

From the vector diagram

$$
\begin{aligned}
& X I \sin \phi=E_{f} \cos \delta-V \\
& X I \cos \phi=E_{f} \sin \delta
\end{aligned}
$$

Also, the mechanical power input is

$$
P=\frac{E_{f} V}{X} \sin \delta
$$

Eliminating ϕ and δ from these equations and solving for I yields

ROTATING MACHINES

PROBLEM 4. 13 (Continued)

$$
I=\frac{V}{X} \sqrt{\left(\frac{E_{f}}{V}\right)^{2}-2 \sqrt{\left(\frac{E_{f}}{V}\right)^{2}-\left(\frac{P X}{V^{2}}\right)^{2}}+1}
$$

Normalizing as indicated in the problem statement we define
$I_{0}=$ rated armature current
$I_{\text {fo }}=$ field current to give rated voltage on open circuit.
$P_{0}=$ rated power
$\frac{I}{I_{0}}=\frac{V}{I_{0} X} \sqrt{\left(\frac{I_{f}}{I_{f 0}}\right)^{2}+1-2 \sqrt{\left(\frac{I_{f}}{I_{f 0}}\right)^{2}-\left(\frac{P_{0}}{P_{0}}\right)^{2}\left(\frac{P_{0} X}{V^{2}}\right)^{2}}}$
Injecting given numbers and being careful about rms and peak quantities we have

$$
\begin{aligned}
& \frac{I}{I_{0}}=0.431 \sqrt{\left(\frac{I_{f}}{I_{f o}}\right)^{2}+1-2 \sqrt{\left(\frac{I_{f}}{I_{f o}}\right)^{2}-3.92\left(\frac{P}{P_{0}}\right)^{2}}} \\
& I_{f 0}=2,030 \mathrm{amps}
\end{aligned}
$$

and

$$
\left(\frac{I_{f}}{I_{f 0}}\right)_{\max }=3.00
$$

The condition that $\delta=\frac{\pi}{2}$ is

$$
\begin{aligned}
& E_{f}=\frac{P X}{V} \\
& \left(\frac{I_{f}}{I_{f o}}\right)_{\min }=\frac{P X}{W M I_{f o} V}=\frac{P X}{V^{2}}=1.98 \frac{P}{P_{o}}
\end{aligned}
$$

For unity p.f., $\cos \phi=1, \sin \phi=0$

$$
\mathrm{E}_{\mathrm{f}} \cos \delta=\mathrm{V} \text { and } \mathrm{E}_{\mathrm{f}} \sin \delta=\mathrm{IX}
$$

eliminating δ we have

$$
\begin{aligned}
& \frac{I}{I_{0}}=\frac{V}{X I_{0}} \sqrt{\left(\frac{E_{f}}{V}\right)^{2}-1} \\
& \frac{I}{I_{o}}=0.431 \sqrt{\left(\frac{I_{f}}{I_{f o}}\right)^{2}-1}
\end{aligned}
$$

PROBLEM 4.13 (Continued)
for 0.85 p.f.

$$
\begin{aligned}
& E_{f} \sin \delta=0.85 I X \\
& E_{f} \cos \delta-v=\sqrt{1-(0.85)^{2}} I X
\end{aligned}
$$

eliminating δ, solving for I, and normalizing yields

$$
\frac{I}{I_{0}}=0.431 \left\lvert\,\left[\left.-0.527 \pm \sqrt{\left.\left(\frac{I_{f}}{I_{f 0}}\right)^{2}-0.722\right]} \right\rvert\,\right.\right.
$$

This is double-valued and the magnitude of the bracketed term is used.
The required curves are shown on the next page.

PROBLEM 4.14

The armature current limit is defined by a circle of radius VI_{0}, where I_{0} is the amplitude of rated armature current.

To find the effect of the field current limit we must express the complex power in terms of field current. Defining quantities in terms of this circuit

The vector diagram is

$$
\begin{aligned}
& \hat{I}=\frac{\hat{E}_{f}-V}{j X} \\
& P+j Q=\hat{V I} *=\frac{V \hat{V E}_{f} *-v^{2}}{-j X}=j \frac{V E_{f} e^{-j \delta}}{X}-j \frac{v^{2}}{X}
\end{aligned}
$$

ROTATING MACHINES

PROBLEM 4.14 (Continued)

If we denote the voltage for maximum field current as $\mathrm{E}_{\mathrm{f}_{\mathrm{o}}}$, this expression becomes

$$
P+j Q=-j \frac{v^{2}}{X}+\frac{V E_{f o}}{X} \sin \delta+j \frac{V E_{f o}}{X} \cos \delta
$$

On a P+jQ plane this trajectory is as sketched below

The stability limit $\left(\delta=\frac{\pi}{2}\right)$ is also shown in the sketch, along with the armature current limit.

The capability curve for the generator of Prob. 4.13 is shown on the next
page.
P and Q are normalized to 724 MVA.

PROBLEM 4.15

The steady state deflection ψ of the rotatable frame is found by setting sum of torques to zero

$$
\begin{equation*}
T^{e}+T_{S}=0=T^{e}-K \psi \tag{1}
\end{equation*}
$$

where T^{e} is electromagnetic torque. This equation is solved for ψ. Torque $T^{\mathbf{e}}$ is found from

ROTATING MACHINES

Capability curve of Problem 4.14

PROBLEM 4. 15 (Continued)

$$
T^{e}=\frac{\partial W_{m}^{\prime}\left(i_{1}, i_{2}, i_{3}, \phi, \psi\right)}{\partial \psi}
$$

and the magnetic coenergy for this electrically linear system is

$$
\begin{aligned}
W_{m}^{\prime}= & \frac{1}{2} L i_{1}^{2}+\frac{1}{2} L i_{2}^{2}+\frac{1}{2} L_{3} i_{3}^{2} \\
& +M i_{1} i_{3} \cos (\phi-\psi)+M i_{2} i_{3} \sin (\phi-\psi)
\end{aligned}
$$

from which

$$
T^{e}=M 1_{1} 1_{3} \sin (\phi-\psi)-M_{2} i_{3} \cos (\phi-\psi)
$$

For constant shaft speed ω, the shaft position is

$$
\phi=\omega t .
$$

Then, with $I_{3}=I_{0}$ as given

$$
\frac{d \lambda_{1}}{d t}=-\omega M I_{0} \sin (\omega t-\psi)+L \frac{d i_{1}}{d t}=-1_{1} R
$$

and

$$
\frac{d \lambda_{2}}{d t}=\omega M I_{0} \cos (\omega t-\psi)+L \frac{\mathrm{di}_{2}}{d t}=-i_{2} R
$$

Using the given assumptions that

$$
\left|\mathrm{L} \frac{\mathrm{di}_{1}}{\mathrm{dt}}\right| \ll\left|\mathrm{Ri}_{1}\right| \text { and } \quad\left|\mathrm{L} \frac{\mathrm{di}_{2}}{\mathrm{dt}}\right| \ll\left|\mathrm{Ri}_{2}\right|
$$

we have

$$
\begin{aligned}
& i_{1}=\frac{\omega M I_{0}}{R} \sin (\omega t-\psi) \\
& i_{2}=-\frac{\omega M I_{0}}{R} \cos (\omega t-\psi)
\end{aligned}
$$

and the torque T^{e} is

$$
T^{e}=M I_{0}\left(\frac{\omega M I_{0}}{R}\right)\left[\sin ^{2}(\omega t-\psi)+\cos ^{2}(\omega t-\psi)\right]
$$

Hence, from (1)

$$
\psi=\frac{\left(M I_{o}\right)^{2}}{K R} \omega
$$

which shows that pointer displacement ψ is a linear function of shaft speed ω which is in turn proportional to car speed.

Suppose we had not neglected the voltage drops due to self inductance. Would the final result still be the same?

ROTATING MACHINES

PROBLEM 4.16

The equivalent circuit with parameter values as given is

From (4.1.82) the torque is

$$
T^{e}=\frac{\left(\frac{k^{2}}{\omega_{s}}\right)\left(\frac{L_{r}}{L_{s}}\right)\left(\frac{R_{s}}{s}\right) V_{s}^{2}}{\left[\omega_{s}\left(1-k^{2}\right) L_{r}\right]^{2}+\left(R_{r} / s\right)^{2}}
$$

where $k^{2}=\frac{M^{2}}{L_{r} L_{s}}$ and $s=\frac{\omega_{s}-\omega_{m}}{\omega_{s}}$
Solution of (4.1.81) for I_{s} yields

$$
\begin{aligned}
& \text {.1.81) for } I_{s} \text { yields } \\
& I_{s}=\sqrt{\frac{\left(\frac{R_{r}}{s}\right)^{2}+\left(\omega_{s} L_{r}\right)^{2}}{\left(\frac{R_{r}}{s}\right)^{2}+\left[\omega_{s} L_{r}\left(1-k^{2}\right)\right]^{2}}} \quad\left(\frac{V / s}{\omega_{s} L_{s}}\right)
\end{aligned}
$$

volt-ampere input is simply (for two phases)

$$
{ }_{(V A)}^{\text {in }}=V_{s} I_{s}
$$

The electrical input power can be calculated in a variety of ways, the simplest being to recognize that in the equivalent circuit the power dissipated in R_{r} / s (for two phases) is just ω_{s} times the electromagnetic torque, hence

$$
P_{\text {in }}=T^{e} \omega_{s}
$$

Finally, the mechanical power output is

$$
P_{\text {mech }}=T^{e} \omega_{m}
$$

These five quantities are shown plotted in the attached graphs. Numerical constants used in the computations are

ROTATING MACHINES

PROBLEM 4.16 (Continued)

$$
\begin{aligned}
& \omega_{s} L_{s}=\omega_{s} L_{r}=\omega_{s} M+0.3=4.8 \Omega \\
& k^{2}=\left(\frac{4.5}{4.8}\right)^{2}=0.878 \\
& T^{e}=\frac{\frac{117}{s}}{0.342+\frac{0.01}{s^{2}}} \text { newton-meters } \\
& I_{s}=\sqrt{\frac{23.0+\frac{0.01}{2}}{0.342+\frac{0.01}{s^{2}}}} 147 \text { amps pK. } \\
& s_{m T}=0.188
\end{aligned}
$$

PROBLEM 4.17
Part a
For ease in calculation it is useful to write the mechanical speed as $\omega_{m}=(1-s) \omega_{s}$
and the fan characteristic as

$$
T_{m}=-B \omega_{s}^{3}(1-s)^{3}
$$

With $\omega_{s}=120 \pi \mathrm{rad} / \mathrm{sec}$

$$
B \omega_{s}^{3}=400 \text { newton-meters }
$$

The results of Prob. 4.16 for torque yields

$$
400(1-s)^{3}=\frac{\frac{117}{s}}{0.342+\frac{0.01}{s^{2}}}
$$

Solution of this equation by cut-and-try for s yields:

$$
s=0.032
$$

Then $P_{\text {mech }}=(400)(1-s)^{3} \omega_{\mathrm{m}}=(400)\left(\omega_{\mathrm{s}}\right)(1-\mathrm{s})^{4}$

$$
P_{\text {mech }}=133 \text { kilowatts into fan }
$$

$$
P_{\text {input }}=\frac{P_{\text {mech }}}{1-s}=138 \text { kilowatts }
$$

Circuit seen by electrical source is

PROBLEM 4.17 (Continued)

Input impedance is

$$
\begin{aligned}
& z_{\text {in }}=j 0.3+\frac{(j 4.5)(3.13+j 0.3)}{3.13+j 4.8}=\frac{-2.79+j 15.0}{3.13+j 4.8} \\
& / Z_{\text {in }}=100.6^{\circ}-56.8^{\circ}=43.8^{\circ}
\end{aligned}
$$

Hence,

$$
\text { p.f. }=\cos \angle \mathrm{z}_{\mathrm{in}}=0.72 \text { lagging }
$$

Part b

Electromagnetic torque scales as the square of the terminal voltage, thus

$$
\mathrm{T}^{\mathrm{e}}=\frac{\frac{117}{\mathrm{~s}}}{0.342+\frac{0.01}{s^{2}}}\left(\frac{V_{s}}{V_{s 0}}\right)^{2}
$$

where $\mathrm{V}_{\mathrm{SO}}=\sqrt{2} 500$ volts peak. The slip for any terminal voltage is now found from

$$
400(1-s)^{3}=\frac{\frac{117}{s}}{0.342+\frac{0.01}{s^{2}}}\left(\frac{V_{s}}{V_{s o}}\right)^{2}
$$

The mechanical power into the fan is

$$
P_{\text {mech }}=400 \omega_{s}^{4}(1-s)^{4}
$$

electrical power input is

$$
P_{\text {in }}=\frac{P_{\text {mech }}}{1-s}
$$

PROBLEM 4.17 (Continued)

and the power factor is found as the cosine of the angle of the input impedance of the circuit

These quantities are plotted as required on the attached graph.
PROBLEM 4.18

Part a

The solution to Prob. 4.1 can be used to find the flux densities here. For the stator a-winding, the solution of Prob. 4.1 applies directly, thus, the radial component of flux density due to current in stator winding a is

$$
B_{r a}(\psi)=\frac{\mu_{o} N_{s} i_{a}}{2 g} \cos \psi
$$

Windings b and c on the stator are identical with the a winding except for the indicated angular displacements, thus,

$$
\begin{aligned}
& B_{r b}(\psi)=\frac{\mu_{0} N_{s} i_{b}}{2 g} \cos \left(\psi-\frac{2 \pi}{3}\right) \\
& B_{r c}(\psi)=\frac{\mu_{0} N_{s} I_{c}}{2 g} \cos \left(\psi-\frac{4 \pi}{3}\right)
\end{aligned}
$$

The solution in Prob. 4.1 for the flux density due to rotor winding current applies directly here, thus,

$$
{ }^{B_{r r}}(\psi)=\frac{\mu_{0} N_{r} \mathbf{I}_{r}}{2 g} \cos (\psi-\theta)
$$

Part b,
The method of part (c) of Prob. 4.1 can be used and the results of that analysis applied directly by replacing rotor quantities by stator b-winding quantities and θ by $2 \pi / 3$. The resulting mutual inductance is (assuming $g \ll R)$

ROTATING MACHINES

Induction Machine Curves for Problem 4.17

ROTATING MACHINES

PROBLEM 4.18 (Continued)

$$
\begin{aligned}
& L_{a b}=\frac{\pi \mu_{0} N_{s}^{2} R \ell}{2 g} \cos \frac{2 \pi}{3} . \\
& L_{a b}=-\frac{\mu_{0} N_{s}^{2} R \ell}{4 g}=-\frac{L_{s}}{2}
\end{aligned}
$$

where L_{s} is the self inductance of one stator winding alone. Note that $L_{a c}=L_{a b}$ because of relative geometry.

Part c

The $\lambda-i$ relations are thus

$$
\begin{aligned}
\lambda_{a}= & L_{s} i_{a}-\frac{L_{s}}{2} i_{b}-\frac{L_{s}}{2} i_{c}+M \cos \theta i_{r} \\
\lambda_{b}= & -\frac{L_{s}}{2} i_{a}+L_{s} i_{b}-\frac{L_{s}}{2} i_{c}+M \cos \left(\theta-\frac{2 \pi}{3}\right) i_{r} \\
\lambda_{c}= & -\frac{L_{s}}{2} i_{a}-\frac{L_{s}}{2} i_{b}+L_{s} 1_{c}+M \cos \left(\theta-\frac{4 \pi}{3}\right) i_{r} \\
\lambda_{r}= & M \cos \theta i_{a}+M \cos \left(\theta-\frac{2 \pi}{3}\right) i_{b} \\
& +M \cos \left(\theta-\frac{4 \pi}{3}\right) i_{c}+L_{r} 1_{r}
\end{aligned}
$$

where from Prob. 4.1,

$$
\begin{aligned}
& \text { b. } 4.1, \pi_{\mu_{0}} N_{s}^{2} R l \\
& L_{s}=\frac{\pi g}{2 \mu_{0} N_{s} N_{r} R \ell} \\
& M=\frac{2 g}{2 g} \\
& L_{r}=\frac{m \mu_{0} N_{r}^{2} R \ell}{2 g}
\end{aligned}
$$

Part d
The torque of electric origin is found most easily by using magnetic coenergy which for this electrically linear system is

$$
\begin{aligned}
& W_{m}^{\prime}\left(i_{a}, i_{b}, i_{c}, i_{r}, \theta\right)=\frac{1}{2} L_{s}\left(i_{a}^{2}+i_{b}^{2}+i_{c}^{2}\right) \\
& \quad+\frac{1}{2} L_{s}\left(i_{a} i_{b}+i_{a} i_{c}+i_{b} i_{c}\right)+M \cos \theta i_{r} i_{a} \\
& \quad+M \cos \left(\theta-\frac{2 \pi}{3}\right) i_{r} i_{b}+M \cos \left(\theta-\frac{4 \pi}{3}\right) i_{r} i_{c}
\end{aligned}
$$

The torque of electric origin is

$$
\begin{aligned}
& T^{e}=\frac{\partial W_{m}^{\prime}\left(i_{a}, i_{b}, i_{c}, i_{r}, \theta\right)}{\partial \theta} \\
& T^{e}=-M i_{r}\left[i_{a} \sin \theta+1_{b} \sin \left(\theta-\frac{2 \pi}{3}\right)+i_{c} \sin \left(\theta-\frac{4 \pi}{3}\right)\right]
\end{aligned}
$$

PROBLEM 4.19

Part a

Superimposing the three component stator flux densities from Part a of Prob. 4.18, we have

$$
B_{r s}=\frac{\mu_{0} N_{s}}{2 g}\left[i_{a} \cos \psi+i_{b} \cos \left(\psi-\frac{2 \pi}{3}\right)+i_{c} \cos \left(\psi-\frac{4 \pi}{3}\right)\right]
$$

Substituting the given currents

$$
\begin{gathered}
\mathrm{B}_{r s}=\frac{\mu_{0} \mathrm{~N}_{s}}{2 g}\left[I_{a} \cos \omega t \cos \psi+I_{b} \cos \left(\omega t-\frac{2 \pi}{3}\right) \cos \left(\psi-\frac{2 \pi}{3}\right)\right. \\
\\
+I_{c} \cos \left(\omega t-\frac{4 \pi}{3}\right) \cos \left(\psi-\frac{4 \pi}{3}\right)
\end{gathered}
$$

Using trigonometric identities and simplifying yields

$$
\begin{aligned}
&{ }^{B_{r s}}=\frac{\mu_{0} N_{s}}{2 g}\left[\left(\frac{I_{a}+I_{b}+I_{c}}{2}\right) \cos (\omega t-\psi)\right. \\
&+\frac{1}{2}\left(I_{a}+I_{b} \cos \frac{4 \pi}{3}+I_{c} \cos \frac{2 \pi}{3}\right) \cos (\omega t+\psi) \\
&\left.+\frac{1}{2}\left(I_{b} \sin \frac{4 \pi}{3}+I_{c} \sin \frac{2 \pi}{3}\right) \sin (\omega t+\psi)\right]
\end{aligned}
$$

Positive traveling wave has point of constant phase defined by

$$
\omega t-\psi=\text { constant }
$$

from which

$$
\frac{d \psi}{d t}=\omega
$$

This is positive traveling wave with amplitude

$$
B_{r f m}=\frac{\mu_{0}^{N} s}{4 g}\left(I_{a}+I_{b}+I_{c}\right)
$$

Negative traveling wave has point of constant phase

$$
\omega t+\psi=\text { constant }
$$

from which

$$
\frac{d \psi}{d t}=-\omega
$$

This defines negative traveling wave with amplitude

ROTATING MACHINES

PROBLEM 4.19 (Continued)

$$
{ }^{B}{ }_{r b m}=\frac{\mu_{0} N_{s}}{4 g} \sqrt{\left(I_{a}-\frac{I_{b}}{2}-\frac{I_{c}}{2}\right)^{2}+\left(-\frac{\sqrt{3}}{2} I_{b}+\frac{\sqrt{3}}{2} I_{c}\right)^{2}}
$$

Part b
When three phase currents are balanced

$$
I_{a}=I_{b}=I_{c}
$$

and $B_{r b m}=0$ leaving only a forward (positive) traveling wave.

PROBLEM 4.20

Part a
Total radial flux density due to stator excitation is

$$
B_{r s}=\frac{\mu_{o} N}{2 g}\left(i_{a} \cos 2 \psi+i_{b} \sin 2 \psi\right)
$$

Substituting given values for currents

$$
B_{r s}=\frac{\mu_{0} N}{2 g}\left(I_{a} \cos \omega t \cos 2 \psi+I_{b} \sin \omega t \sin 2 \psi\right)
$$

Part b

$$
B_{r s}=\frac{\mu_{0} N}{2 g}\left|\left(\frac{I_{a}+I_{b}}{2}\right) \cos (\omega t-2 \psi)+\left(\frac{I_{a}-I_{b}}{2}\right) \cos (\omega t+2 \psi)\right|
$$

The forward (positive-traveling) component has constant phase defined by

$$
\omega t-2 \psi=\text { constant }
$$

from which

$$
\frac{d \psi}{d t}=\frac{\omega}{2}
$$

The backward (negative-traveling) component has constant phase defined by

$$
\omega t+2 \psi=\text { constant }
$$

from which

$$
\frac{d \psi}{d t}=-\frac{\omega}{2}
$$

Part c
From part b, when $I_{a}=I_{b}, I_{a}-I_{b}=0$ and the backward-wave amplitude goes to zero. When $I_{b}=-I_{a}, I_{a}+I_{b}=0$ and the forward-wave amplitude goes to zero.

ROTATING MACHINES

PROBLEM 4.21

Referring to the solution for Prob. 4.20,
Part a

$$
\begin{aligned}
& B_{r s}=\frac{\mu_{0} N}{2 g}\left(i_{a} \cos p \psi+i_{b} \sin p \psi\right) \\
& B_{r s}=\frac{\mu_{0} N}{2 g}\left(I_{a} \cos \omega t \cos p \psi+I_{b} \sin \omega t \sin p \psi\right)
\end{aligned}
$$

Part b
Using trigonometric identities yields

$$
B_{r s}=\frac{\mu_{0} N}{2 g}\left[\left(\frac{I_{a}+I_{b}}{2}\right) \cos (\omega t-p \psi)+\left(\frac{I_{a}-I_{b}}{2}\right) \cos (\omega t+p \psi)\right]
$$

Forward wave has constant phase

$$
\omega t-p \psi=\text { constant }
$$

from which

$$
\frac{d \psi}{d t}=\frac{\omega}{p}
$$

Backward wave has constant phase

$$
\omega t+p \psi=\text { constant }
$$

from which

$$
\frac{d \psi}{d t}=-\frac{\omega}{p}
$$

Part c

From part b, when $I_{b}=I_{a}, I_{a}-I_{b}=0$, and backward-wave amplitude goes to zero. When $I_{b}=-I_{a}, I_{a}+I_{b}=0$, and forward-wave amplitude goes to zero. PROBLEM 4.22

This is an electrically linear system, so the magnetic coenergy is

$$
W_{m}^{\prime}\left(1_{s}, 1_{r}, \theta\right)=\frac{1}{2}\left(L_{o}+L_{2} \cos 2 \theta\right) i_{s}^{2}+\frac{1}{2} L_{r} 1_{r}^{2}+M 1_{r} 1_{s} \cos \theta
$$

Then the torque is

$$
T^{e}=\frac{\partial W_{m}^{\prime}\left(i_{s}, i_{r}, \theta\right)}{\partial \theta}=-M i_{r} i_{s} \sin \theta-L_{2} i_{s}^{2} \sin 2 \theta
$$

PROBLEM 4.23

Part a

$$
L=\frac{L_{o}}{(1-0.25 \cos 4 \theta-0.25 \cos 8 \theta)}
$$

ROTATING MACHINES

PROBLEM 4.23 (Continued)
The variation of this inductance with θ is shown plotted below.

ROTATING MACHINES

PROBLEM 4.23 (Continued)

From this plot and the configuration of Fig. 4P.23, it is evident that minimum reluctance and maximum inductance occur when $\theta=0, \pi / 2, \pi, \ldots \frac{n}{2} \pi, \ldots$ The inductance is symmetrical about $\theta=0, \frac{\pi}{2}, \ldots$ and about $\theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \ldots \frac{\pi}{4}+\frac{n \pi}{2}, \ldots$ as it should be. Minimum inductance occurs on both sides of $\theta=\frac{\pi}{4}$ which ought to be maximum reluctance.

The general trend of the inductance is correct for the geometry of Fig. 4 P. 23 but the equation would probably be a better representation if the sign of the 8θ term were reversed.

Part b
For this electrically linear system, the magnetic stored energy is

$$
\begin{aligned}
& W_{m}(\lambda, \theta)=\frac{1}{2} \frac{\lambda^{2}}{L} \\
& W_{m}(\lambda, \theta)=\frac{\lambda^{2}(1-0.25 \cos 4 \theta-0.25 \cos 8 \theta)}{2 L_{0}}
\end{aligned}
$$

The torque is then

$$
\begin{aligned}
& T^{e}=-\frac{\partial W_{m}(\lambda, \theta)}{\partial \theta} \\
& T^{e}=-\frac{\lambda^{2}}{2 L_{o}}(\sin 4 \theta+2 \sin 8 \theta)
\end{aligned}
$$

Part c

$$
\text { With } \lambda=\Lambda_{0} \cos \omega t \text { and } \theta=\Omega t+\delta
$$

$$
T=-\frac{\Lambda_{0}^{2} \cos ^{2} \omega t}{2 L_{0}}[\sin (4 \Omega t+4 \delta)+2 \sin (8 \Omega t+8 \delta)]
$$

Repeated use of trig identities yields for the instantaneous converted power

$$
\begin{aligned}
\Omega T^{e}=-\frac{\Omega \Lambda_{0}^{2}}{4 L_{0}} & {[\sin (4 \Omega t+4 \delta)+2 \sin (8 \Omega t+8 \delta)} \\
& +\frac{1}{2} \sin (2 \omega t+4 \Omega t+4 \delta)+\frac{1}{2} \sin (4 \Omega t-2 \omega t+4 \delta) \\
& +\sin (2 \omega t+8 \Omega t+8 \delta)+\sin (8 \Omega t-2 \omega t+8 \delta)]
\end{aligned}
$$

This can only have a non-zero average value when $\Omega \neq 0$ and a coefficient of t in one argument is zero. This gives 4 conditions

$$
\Omega= \pm \frac{\omega}{2}, \pm \frac{\omega}{4}
$$

When $\Omega= \pm \frac{\omega}{2}$

$$
\left[\Omega \mathrm{T}^{e}\right]_{\text {avg }}=-\frac{\Omega \Lambda_{o}^{2}}{8 L_{o}} \sin 4 \delta
$$

ROTATING MACHINES

PROBLEM 4.23 (Continued)

and when $\Omega= \pm \frac{\omega}{4}$

$$
\left[\Omega T^{e}\right]_{\text {avg }}=-\frac{\Omega \Lambda_{0}^{2}}{4 L_{o}} \sin 8 \delta
$$

PROBLEM 4.24
It will be helpful to express the given ratings in alternative ways.
Rated output power $=6000 \mathrm{HP}=4480 \mathrm{~kW}$ at $0.8 \mathrm{p} . \mathrm{f}$. this is

$$
\frac{4480}{0.8}=5600 \mathrm{KVA} \text { total }
$$

or

$$
2800 \text { KVA per phase }
$$

The rated phase current is then

$$
I_{s}=\frac{2800 \times 10^{3}}{3 \times 10^{3}}=933 \mathrm{amps} \mathrm{rms}=1320 \mathrm{amps} \mathrm{pk}
$$

Given:

$$
\text { Direct axis reactance } \omega\left(L_{o}+L_{2}\right)=4.0 \text { ohms }
$$

Quadrature axis reactance $\omega\left(L_{0}-L_{2}\right)=2.2$ ohms

$$
\omega L_{0}=3.1 \text { ohms } \quad \omega L_{2}=0.9 \text { ohms }
$$

The number of poles is not given in the problem statement. We assume 2 poles. Part a

Rated field current can be found in several ways, all involving cut-and-try procedures. Our method will be based on a vector diagram like that of Fig. 4.2.5(a), thus

PROBLEM 4.24 (Continued)
Evaluating the horizontal and vertical components of $\hat{\mathrm{V}}_{s}$ we have (remember that $\boldsymbol{\gamma}<0$)

$$
\begin{aligned}
& V_{s} \cos \theta=E_{f} \cos \left(\frac{\pi}{2}+\gamma\right)+\omega L_{2} I_{s} \cos \left(\frac{\pi}{2}+2 \gamma\right) \\
& V_{s} \sin \theta=E_{f} \sin \left(\frac{\pi}{2}+\gamma\right)+\omega L_{2} I_{s} \sin \left(\frac{\pi}{2}+2 \gamma\right)+\omega L_{o} I_{s}
\end{aligned}
$$

Using trigonometric identities we rewrite these as

$$
\begin{aligned}
& v_{s} \cos \theta=-E_{f} \sin \gamma-\omega L_{2} I_{s} \sin 2 \gamma \\
& v_{s} \sin \theta=E_{f} \cos \gamma+\omega L_{2} I_{s} \cos 2 \gamma+\omega L_{o} I_{s}
\end{aligned}
$$

Next, it will be convenient to normalize these equations to V_{s},

$$
\begin{aligned}
& \cos \theta=-e_{f} \sin \gamma-\frac{\omega L_{2} I_{s}}{V_{s}} \sin 2 \gamma \\
& \sin \theta=e_{f} \cos \gamma+\frac{\omega L_{2} I_{s}}{V_{s}} \cos 2 \gamma+\frac{\omega L_{o} I_{s}}{V_{s}}
\end{aligned}
$$

where

$$
e_{f}=\frac{E_{f}}{V_{s}}
$$

Solution of these two equations for e_{f} yields

$$
\begin{aligned}
& \mathbf{e}_{f}=\frac{\sin \theta-\frac{\omega L_{2} I_{s}}{V_{s}} \cos 2 \gamma-\frac{\omega L_{o} I_{s}}{V_{s}}}{\cos \gamma} \\
& \mathbf{e}_{f}=-\cos \theta-\frac{\omega L_{2} I_{s}}{V_{s}} \sin 2 \gamma \\
& \sin \gamma
\end{aligned}
$$

For rated conditions as given the constants are:

$$
\begin{aligned}
& \cos \theta=\text { p.f. }=0.8 \\
& \sin \theta=-0.6 \text { (negative sign for leading p.f.) } \\
& \frac{\omega L_{2} I_{s}}{V_{s}}=0.280 ; \frac{\omega L_{o} I_{s}}{V_{s}}=0.964
\end{aligned}
$$

Solution by trial and error for a value of γ that satisfies both equations simultaneously yields

$$
\gamma=-148^{\circ}
$$

PROBLEM 4.24 (Continued)

and the resulting value for e_{f} is

$$
\mathbf{e}_{f}=1.99
$$

yielding for the rated field current

$$
I_{r}=\frac{V_{\mathbf{s}} \mathbf{e}_{\mathbf{f}}}{\omega M}=24.1 \mathrm{amps} .
$$

where V_{s} is in volts peak.
Part b
The V-curves can be calculated in several ways. Our choice here is to first relate power converted to terminal voltage and field generated voltage by multiplying (4.2.46) by ω, thus

$$
P=\omega T^{e}=-\frac{E_{f} V_{s}}{X_{d}} \sin \delta-\frac{\left(X_{d}-X_{q}\right) V_{s}^{2}}{2 X_{d} X_{q}} \sin 2 \delta
$$

where

$$
\begin{aligned}
& x_{d}=\omega\left(L_{0}+L_{2}\right) \\
& x_{q}=\omega\left(L_{0}-L_{2}\right)
\end{aligned}
$$

We normalize this expression with respect to V_{s}^{2} / X_{d}, then

$$
\frac{P X_{d}}{v_{s}^{2}}=-e_{f} \sin \delta-\frac{\left(x_{d}-x_{q}\right)}{2 x_{q}} \sin 2 \delta
$$

Pull-out torque occurs when the derivative of this power with respect to δ goes to zero. Thus pull-out torque angle is defined by

$$
\frac{\partial}{\partial \delta}\left(\frac{P X_{d}}{v_{s}^{2}}\right)=-e_{f} \cos \delta-\frac{\left(X_{d}-X_{q}\right)}{X_{q}} \cos 2 \delta=0
$$

The use of (4.2.44) and (4.2.45) then yield the armature (stator) current amplitude as

$$
I_{s}=\sqrt{\left(\frac{V_{s}}{X_{q}} \sin \delta\right)^{2}+\left(\frac{V_{s}}{X_{d}} \cos \delta-\frac{E_{f}}{X_{d}}\right)^{2}}
$$

A more useful form is

$$
I_{s}=\frac{V_{s}}{X_{d}} \sqrt{\left(\frac{X_{d}}{X_{q}} \sin \delta\right)^{2}+\left(\cos \delta-e_{f}\right)^{2}}
$$

The computation procedure used here was to fix the power and assume values of δ over a range going from either rated armature current or rated field current to pull-out. For each value of δ, the necessary value of e_{f} is calculated

PROBLEM 4.24 (Continued)
from the expression for power as

$$
\mathbf{e}_{f}=\frac{\frac{P X_{d}}{v_{g}^{2}}+\frac{\left(X_{d}-X_{q}\right)}{2 x_{q}} \sin 2 \delta}{-\sin \delta}
$$

and then the armature current magnitude is calculated from

$$
I_{s}=\frac{V_{s}}{X_{d}} \sqrt{\left.\frac{X_{d}}{\frac{X}{X}_{q}} \sin \delta\right)^{2}+\left(\cos \delta-e_{f}\right)^{2}}
$$

For zero load power, $\gamma=0$ and $\delta=0$ and, from the vector diagram given earlier, the armature current amplitude is

$$
I_{s}=\frac{\left|V_{s}-E_{f}\right|}{w\left(L_{0}+L_{2}\right)}
$$

with pull-out still defined as before. The required V-curves are shown in the followinggraph. Note that pull-out conditions are never reached because range of operation is limited by rated field current and rated armature current.

PROBLEM 4.25
Equation (4.2.41) is (assuming arbitrary phase for I_{s})

$$
\hat{V}_{s}=j \omega L_{o} \hat{I}_{s}+j \omega L_{2} \hat{I}_{s} e^{j 2 \gamma}+j \omega M I_{r} e^{j 2 \gamma}
$$

With $\gamma=0$ as specified

$$
\hat{v}_{s}=j \omega\left(L_{0}+L_{2}\right) \hat{I}_{s}+j \omega M I_{r}
$$

The two vector diagrams required are

\hat{L}_{5}
capacitive
$V_{s}<\omega M I_{r}$

PROBLEM 4.26

Part a
From Fig. 4P. 26 (a)

$$
\frac{\hat{V}}{\hat{v}_{s}}=\frac{\frac{1}{Y} e^{j \phi}}{j X_{s}+\frac{1}{Y} e^{j \phi}}
$$

from which the ratio of the magnitudes is

$$
\frac{|\hat{V}|}{\left|\hat{V}_{s}\right|}=\frac{\frac{1}{Y}}{\sqrt{\left(\frac{1}{Y} \cos \phi\right)^{2}+\left(\frac{1}{Y} \sin \phi+X_{s}\right)^{2}}}
$$

For the values $Y=0.01$ mho, $X_{s}=10$ ohms

Then, for $\phi=0$

$$
\frac{|\hat{v}|}{\left|\hat{v}_{s}\right|}=\frac{100}{\sqrt{10,000+100}}=0.995
$$

and, for $\phi=45^{\circ}$

$$
\frac{\left|\hat{v}_{\mathrm{v}}\right|}{\left|\hat{v}_{s}\right|}=\frac{100}{\sqrt{\left(\frac{100}{\sqrt{2}}\right)^{2}+\left(\frac{100}{\sqrt{2}}+10\right)^{2}}}=0.932
$$

Part b
It is instructive to represent the synchronous condenser as a susceptance $j B$, then when B is positive the synchronous condenser appears capacitive. Now the circuit is


```
ROTATING MACHINES
```


PROBLEM 4.26 (Continued)

Now the voltage ratio is

$$
\begin{aligned}
& \frac{\hat{v}^{\prime}}{\hat{v}_{s}}=\frac{\frac{1}{Y e^{-j \phi_{1}}+j B}}{\frac{1}{Y e^{-j \phi_{+}}+j B}+j X_{s}}=\frac{1}{1+j X_{s} Y e^{-j \phi}-B X_{s}} \\
& \frac{\hat{v}}{\hat{v}_{s}}=\frac{1}{1-B X_{s}+X_{s} Y \sin \phi+j X_{s} Y \cos \phi}
\end{aligned}
$$

Then

$$
\frac{|\hat{v}|}{\left|\hat{v}_{s}\right|}=\frac{1}{\sqrt{\left(1-B X_{s}+X_{s} Y \sin \phi\right)^{2}+\left(X_{s} Y \cos \phi\right)^{2}}}
$$

For $\phi=0$

$$
\frac{|\hat{v}|}{\left|\hat{v}_{s}\right|}=\frac{1}{\sqrt{\left(1-B X_{s}\right)^{2}+\left(X_{s} Y\right)^{2}}}
$$

If this is to be unity

$$
\begin{array}{r}
\left(1-B X_{s}\right)^{2}+\left(X_{s} Y\right)^{2}=1 \\
1-B X_{s}=\sqrt{1-\left(X_{s} Y\right)^{2}} \\
B=\frac{1-\sqrt{1-\left(X_{s} Y\right)^{2}}}{X_{s}}
\end{array}
$$

for the constants given

$$
B=\frac{1-\sqrt{1-0.01}}{10}=\frac{0.005}{10}=\frac{0.0005 \mathrm{mho}}{}
$$

Volt-amperes required from synchronous condenser

$$
(\mathrm{VA})_{s c}=|\hat{\mathrm{V}}|^{2} \mathrm{~B}=(2)\left(10^{10}\right)(5)\left(10^{-4}\right)=10,000 \mathrm{KVA}
$$

Real power supplied to load

$$
P_{L}=|\hat{V}|^{2} Y \cos \phi=|\hat{V}|^{2} Y \text { for } \phi=0
$$

Then

$$
\frac{(\mathrm{VA})_{S C}}{P_{L}}=\frac{B}{Y}=\frac{0.0005}{0.01}=0.05
$$

For $\phi=0$ the synchronous condenser needs to supply reactive volt amperes equal to 5 percent of the load power to regulate the voltage perfectly.

PROBLEM 4.26 (Continued)
For $\phi=45^{\circ}$

$$
\frac{|\hat{v}|}{\left|\hat{V}_{s}\right|}=\frac{1}{\sqrt{\left(1-B X_{s}+\frac{X_{s} Y}{\sqrt{2}}\right)^{2}+\left(\frac{X_{s} Y}{\sqrt{2}}\right)^{2}}}
$$

In order for this to be unity

$$
\begin{array}{r}
\left(1-B X_{s}+\frac{X_{s} Y}{\sqrt{2}}\right)^{2}+\left(\frac{X_{s} Y}{\sqrt{2}}\right)^{2}=1 \\
B=\frac{1+\frac{X_{s} Y}{\sqrt{2}}-\sqrt{1-\left(\frac{X_{s}}{\sqrt{2}}\right)^{2}}}{X_{s}}
\end{array}
$$

For the constants given

$$
B=\frac{1+0.0707-\sqrt{1-0.005}}{10}=0.00732 \mathrm{mho}
$$

Volt-amperes required from synchronous condenser

$$
(\mathrm{VA})_{s c}=|\hat{\mathrm{V}}|^{2} \mathrm{~B}=(2)\left(10^{10}\right)(7.32)\left(10^{-3}\right)=146,400 \mathrm{KVA}
$$

Real power supplied to load

$$
P_{L}=|\hat{V}|^{2} Y \cos \phi=\frac{|\hat{V}|^{2} Y}{\sqrt{2}} \text { for } \phi=45^{\circ}
$$

Then

$$
\frac{(\mathrm{VA})}{\mathrm{sc}} \mathrm{P}_{\mathrm{L}}=\frac{\mathrm{B} \sqrt{2}}{\mathrm{Y}}=\frac{(\sqrt{2})(0.00732)}{0.01}=1.04
$$

Thus for a load having power factor of 0.707 lagging a synchronous condenser needs to supply reactive volt-amperes equal to 1.04 times the power supplied to the load to regulate the voltage perfectly.

These results, of course, depend on the internal impedance of the source. That given is typical of large power systems.

PROBLEM 4.27

Part a

This part of this problem is very much like part a of Prob. 4.24. Using results from that problem we define

PROBLEM 4.27 (Continued)

$$
e_{f}=\frac{E_{f}}{V_{s}}=\frac{\omega M I_{r}}{V_{s}}
$$

where V_{s} is in volts peak. Then

$$
\begin{aligned}
& \mathbf{e}_{f}=\frac{\sin \theta-\frac{\omega L_{2} I_{s}}{V_{s}} \cos 2 \gamma-\frac{\dot{\omega} L_{o} I_{s}}{V_{s}}}{\cos \gamma} \\
& \mathbf{e}_{f}=-\cos \theta-\frac{\omega L_{2} I_{s}}{V_{s}} \sin 2 \gamma \\
& \sin \gamma
\end{aligned}
$$

From the constants given

$$
\begin{aligned}
& \cos \theta=1.0 ; \quad \sin \theta=0 \\
& \omega L_{o}=2.5 \text { ohms } \quad \omega L_{2}=0.5 \mathrm{ohm}
\end{aligned}
$$

Rated power

$$
P_{L}=1000 / P=746 \mathrm{KW}
$$

Armature current at rated load is

$$
I_{s}=\frac{746,000}{\sqrt{2} 1000}=527 \mathrm{amps} \text { peak }=373 \mathrm{amps} \mathrm{RMS}
$$

Then

$$
\frac{\omega L_{2} I_{s}}{V_{s}}=0.186 ; \frac{\omega L_{o} I_{s}}{V_{s}}=0.932
$$

Using the constants

$$
\begin{aligned}
& \mathbf{e}_{f}=\frac{-0.186 \cos 2 \gamma-0.932}{\cos \gamma} \\
& \mathbf{e}_{f}=\frac{-1-0.186 \sin 2 \gamma}{\sin \gamma}
\end{aligned}
$$

The use of trial-and-error to find a value of γ that satisfies these two equations simultaneously yields

$$
\gamma=-127^{\circ} \text { and } e_{f}=1.48
$$

Using the given constants we obtain

$$
I_{r}=\frac{e_{f} V_{s}}{\omega M}=\frac{(1.48)(\sqrt{2})(1000)}{150}=14.0 \mathrm{amps}
$$

For L_{f} / R_{f} very large compared to a half period of the supply voltage the field

PROBLEM 4.27 (Continued)
current will essentially be equal to the peak of the supply voltage divided by the field current; thus, the required value of R_{f} is

$$
R_{f}=\frac{V_{s}}{I_{r}}=\frac{\sqrt{2}(1000)_{n}}{14.0} \quad 100 \text { ohms }
$$

Part b
We can use (4.2.46) multiplied by the rotational speed ω to write the output power as

$$
P_{L}=\omega T^{e}=-\frac{E_{f} V_{s}}{X_{d}} \sin \delta-\frac{\left(X_{d}-X_{q}\right) V_{s}^{2}}{2 X_{d} X_{q}} \sin 2 \delta
$$

where

$$
\begin{aligned}
& X_{d}=\omega\left(L_{0}+L_{2}\right)=\text { direct axis reactance } \\
& X_{q}=\omega\left(L_{0}-L_{2}\right)=\text { quadrature axis reactance }
\end{aligned}
$$

With the full-wave rectifier supplying the field winding we can express

$$
E_{f}=\omega M I_{r}=\frac{\omega M}{R_{f}} V_{S}
$$

Then

$$
P_{L}=-\frac{\omega M v_{s}^{2}}{R_{f} X_{d}} \sin \delta-\frac{\left(X_{d}-X_{q}\right) v_{s}^{2}}{2 X_{d} X_{q}} \sin 2 \delta
$$

Factoring out $\mathrm{V}_{\mathrm{s}}^{2}$ yields

$$
P_{L}=v_{s}^{2}\left[-\frac{\omega M}{R_{f} X_{d}} \sin \delta-\frac{\left(x_{d}-x_{q}\right)}{2 x_{d} X_{q}} \sin 2 \delta\right]
$$

Substitution of given constants yields

$$
746 \times 10^{3}=v_{s}^{2}[-0.500 \sin \delta-0.083 \sin 2 \delta]
$$

To find the required curve it is easiest to assume δ and calculate the required V_{s}, the range of δ being limited by pull-out which occurs when

$$
\frac{\partial P_{L}}{\partial \delta}=0=-0.500 \cos \delta-0.166 \cos 2 \delta
$$

The resulting curve of δ as a function of V_{s} is shown in the attached graph. Note that the voltage can only drop 15.5% before the motor pulls out of step.

Although it was not required for this problem, calculations will show that operation at reduced voltage will lead to excessive armature current, thus, operation in this range must be limited to transient conditions:

81

PROBLEM 4.28

Part a

This is similar to part a of Prob. 4.24 except that now we are considering a number of pole pairs greater than two and we are treating a generator. Considering first the problem of pole pairs, reference to Sec. 4.1 .8 and 4.2 .4 shows that when we define electrical angles γ_{e} and δ_{e} as

$$
\gamma_{e}=p \gamma \text { and } \delta_{e}=p \delta
$$

where p is number of pole pairs (36 in this problem) and when we realize that the electromagnetic torque was obtained as a derivative of inductances with respect to angle we get the results

$$
T^{e}=-\frac{P}{\omega} \frac{V_{s} P_{f}}{X_{d}} \sin \delta_{e}-\frac{p\left(X_{d}-X_{q}\right) V_{s}^{2}}{\omega 2 X_{d} X_{q}} \sin 2 \delta_{e}
$$

where $X_{d}=\omega\left(L_{o}+L_{2}\right)$ and $X_{q}=\omega\left(L_{o}-L_{2}\right)$, and, because the synchronous speed is ω / p (see 4.1.95) the electrical power output from the generator is

$$
P=-\frac{\omega}{p} T^{e}=\frac{V_{s} E_{f}}{X_{d}} \sin \delta_{e}+\frac{\left(X_{d}-X_{q}\right) V_{s}^{2}}{2 X_{d} X_{q}} \sin 2 \delta_{e}
$$

Next, we are dealing with a generator so it is convenient to replace I_{s} by $-I_{s}$ in the equations. To make clear what is involved we redraw Fig. 4.2.5(a) with the sign of the current reversed.

PROBLEM 4.28 (Continued)

Now, evaluating horizontal and vertical components of V_{s} we have

$$
\begin{aligned}
& V_{s} \cos \theta-\omega L_{2} I_{s} \sin 2 \gamma_{e}=E_{f} \sin \gamma_{e} \\
&-V_{s} \sin \theta=\omega L_{o} I_{s}+\omega L_{2} I_{s} \cos 2 \gamma_{e}+E_{f} \cos \gamma_{e}
\end{aligned}
$$

From these equations we obtain

$$
\begin{aligned}
& \mathbf{e}_{f}=\frac{\cos \theta-\frac{\omega L_{2} I_{s}}{V_{s}} \sin 2 \gamma_{e}}{\sin \gamma_{e}} \\
& e_{f}=\frac{-\sin \theta-\frac{\omega L_{o} I_{s}}{V_{s}}-\frac{\omega L_{2} I_{s}}{V_{s}} \cos 2 \gamma_{e}}{\cos \gamma_{e}}
\end{aligned}
$$

where

$$
\mathbf{e}_{f}=\frac{\mathbf{E}_{\mathbf{f}}}{V_{s}}=\frac{\omega M I_{\mathbf{r}}}{V_{s}}
$$

with

$$
\begin{aligned}
& V_{s} \text { in volts peak } \\
& I_{s} \text { in amps peak }
\end{aligned}
$$

ω is the electrical frequency
For the given constants

$$
\begin{array}{ll}
\cos \theta=\text { p.f. }=0.850 & \sin \theta=0.528 \\
\frac{\omega L_{2} I_{s}}{V_{s}}=0.200 & \frac{\omega L_{o} I_{s}}{V_{s}}=1.00
\end{array}
$$

and

$$
\begin{aligned}
& e_{f}=\frac{0.850-0.200 \sin 2 \gamma_{e}}{\sin \gamma_{e}} \\
& e_{f}=\frac{-1.528-0.200 \cos 2 \gamma_{e}}{\cos \gamma_{e}}
\end{aligned}
$$

Trial-and-error solution of these two equations to find a positive value of Y_{e} that satisfies both equations simultaneously ylelds

$$
\gamma_{e}=147.5^{\circ} \quad \text { and } \quad e_{f}=1.92
$$

From the definition of e_{f} we have

$$
I_{r}=\frac{e_{f} V_{s}}{\omega M}=\frac{(1.92)(\sqrt{2})(10,000)}{(120)(\pi)(0.125)}=576 \mathrm{amps}
$$

PROBLEM 4.28 (Continued)

Part b

From Prob. 4.14 the definition of complex power is

$$
\hat{\mathrm{v}}_{s} \hat{\mathrm{I}}_{s} *=P+j Q
$$

where \hat{V}_{s} and $\hat{\mathrm{I}}_{\mathrm{s}}$ are complex amplitudes.
The capability curve is not as easy to calculate for a salient-pole
machine as it was for a smooth-air-gap machine in Prob. 4.14. It will be easiest to calculate the curve using the power output expression of part a

$$
P=\frac{V_{s} E_{f}}{X_{d}} \sin \delta_{e}+\frac{\left(X_{d}-X_{q}\right) V_{s}^{2}}{2 X_{d} X_{q}} \sin 2 \delta_{e}
$$

the facts that

$$
\begin{aligned}
& P=V_{s} I_{s} \cos \theta \\
& Q=V_{s} I_{s} \sin \theta
\end{aligned}
$$

and that I_{s} is given from (4.2.44) and (4.2.45) as

$$
I_{s}=\sqrt{\left(\frac{V_{s}}{X_{q}} \sin \delta_{e}\right)^{2}+\left(\frac{V_{s}}{X_{d}} \cos \delta_{e}-\frac{E_{f}}{X_{d}}\right)^{2}}
$$

First, assuming operation at rated field current the power is

$$
P=320 \times 10^{6} \sin \delta_{e}+41.7 \times 10^{6} \sin 2 \delta_{e} \text { watts. }
$$

We assume values of δ_{e} starting from zero and calculate P; then we calculate I_{s} for the same values of δ_{e} from

$$
I_{s}=11,800 \sqrt{\left(1.50 \sin \delta_{e}\right)^{2}+\left(\cos \delta_{e}-1.92\right)^{2}} \text { amps peak }
$$

Next, because we know P, V_{s}, and I_{s} we find θ from

$$
\cos \theta=\frac{\mathrm{P}}{\mathrm{~V}_{\mathrm{s}} \mathrm{I}_{\mathrm{s}}}
$$

From θ we then find Q from

$$
Q=V_{s} I_{s} \sin \theta
$$

This process is continued until rated armature current

$$
I_{s}=\sqrt{2} \quad 10,000 \mathrm{amps} \text { peak }
$$

is reached.
The next part of the capability curve is limited by rated armature current which defines the trajectory

PROBLEM 4.28 (Continued)

$$
\sqrt{P^{2}+Q^{2}}=V_{s} I_{s}
$$

where V_{s} and I_{s} are rated values.
For $Q<0$, the capability curve is limited by pull-out conditions
defined by the condition

$$
\frac{d P}{d \delta_{e}}=0=\frac{V_{s} E_{f}}{X_{d}} \cos \delta_{e}+\frac{\left(X_{d}-X_{q}\right) v_{s}^{2}}{X_{d} X_{q}} \cos 2 \delta_{e}
$$

To evaluate this part of the curve we evaluate e_{f} in terms of δ_{e} from the power and current expressions

$$
\begin{aligned}
e_{f} & =\frac{\frac{P X_{d}}{v_{s}^{2}}-\frac{\left(X_{d}-X_{q}\right)}{2 X_{q}} \sin 2 \delta_{e}}{\sin \delta_{e}} \\
e_{f} & =\cos \delta_{e}-\sqrt{\left(\frac{I_{s} X_{d}}{v_{s}}\right)^{2}-\left(\frac{X_{d}}{X_{q}} \sin \delta_{e}\right)^{2}}
\end{aligned}
$$

For each level of power at a given power factor we find the value of δ_{e} that simultaneously satisfies both equations. The resulting values of e_{f} and δ_{e} are used in the stability criterion

$$
\frac{d P}{d \delta_{e}}=\frac{v_{s}^{2} e_{f}}{X_{d}} \cos \delta_{e}+\frac{\left(X_{d}-X_{q}\right) v_{s}^{2}}{X_{d} X_{q}} \cos 2 \delta_{e} \geq 0
$$

When this condition is no longer met (equal sign holds) the stability limit is reached. For the given constants

$$
\begin{aligned}
& e_{f}=\frac{\frac{P}{167 \times 10^{6}}-0.25 \sin 2 \delta_{e}}{\sin \delta_{e}} \\
& e_{f}=\cos \delta_{e}-\sqrt{\left(\frac{I_{s}}{11,800}\right)^{2}-\left(1.5 \sin \delta_{e}\right)^{2}} \\
& \frac{d P}{d \delta_{e}}=e_{f} \cos \delta_{e}+0.5 \cos 2 \delta_{e} \geq 0
\end{aligned}
$$

The results of this calculation along with the preceding two are shown on the attached graph. Note that the steady-state stabllity never limits the capability, In practice, however, more margin of stability is required and the capability in the fourth quadrant is limited accordingly.

PROBLEM 4.29

Part a

For this electrically linear system the electric coenergy is

$$
\begin{aligned}
W_{e}^{\prime}\left(v_{1}, v_{2}, \theta\right) & =\frac{1}{2} C_{o}(1+\cos 2 \theta) v_{1}^{2} \\
& +\frac{1}{2} C_{o}(1+\sin 2 \theta) v_{2}^{2}
\end{aligned}
$$

The torque of electric origin is

$$
T^{e}=\frac{\partial W_{e}^{\prime}\left(v_{1}, v_{2}, \theta\right)}{\partial \theta^{\prime}}=C_{.0}\left(v_{2}^{2} \cos 2 \theta-v_{1}^{2} \sin 2 \theta\right)
$$

Part b

$$
\text { With } v_{1}=v_{0} \cos \omega t ; v_{2}=v_{0} \sin \omega t
$$

$$
T^{e}=C_{0} V_{0}^{2}\left(\sin ^{2} \omega t \cos 2 \theta-\cos ^{2} \omega t \sin 2 \theta\right)
$$

Using trig identities

$$
\begin{aligned}
& T^{e}=\frac{C_{0} V_{0}^{2}}{2}[\cos 2 \theta-\cos 2 \omega t \cos 2 \theta-\sin 2 \theta-\cos 2 \omega t \cos 2 \theta] \\
& T^{e}=\frac{C_{0} V_{0}^{2}}{2}(\cos 2 \theta-\sin 2 \theta)-\frac{C_{0} V_{0}^{2}}{2}[\cos (2 \omega t-2 \theta)+\cos (2 \omega t+2 \theta)]
\end{aligned}
$$

Three possibilities for time-average torque:

Case I:

Shaft sitting still at fixed angle θ
Case II:
Shaft turning in positive θ direction

$$
\theta=\omega t+\gamma
$$

where γ is a constant
Case III:
Shaft turning in negative θ direction

$$
\theta=-\omega t+\delta
$$

where δ is a constant.

Part c
The time average torques are:
Case I: $\theta=$ const.

$$
\left\langle T{ }^{e}\right\rangle=\frac{C_{0} v_{0}^{2}}{2}(\cos 2 \theta-\sin 2 \theta)
$$

ROTATING MACHINES

PROBLEM 4.29 (Continued)
Case II: $\theta=\omega t+\gamma$

$$
\begin{aligned}
& +\gamma \\
& \left\langle T^{e}\right\rangle=-\frac{C_{0} v_{0}^{2}}{2} \cos 2 \gamma
\end{aligned}
$$

Case III: $\theta=-\omega t+\delta$

$$
\begin{aligned}
& \omega t+\delta \\
& \left\langle\mathrm{T}^{\mathrm{e}}\right\rangle=-\frac{\mathrm{C}_{0} \mathrm{~V}_{\mathrm{o}}^{2}}{2} \cos 2 \delta
\end{aligned}
$$

PROBLEM 4.30
For an applied voltage $v(t)$ the electric coenergy for this electrically linear system is

$$
W_{e}^{\prime}(v, \theta)=\frac{1}{2}\left(C_{o}+C_{1} \cos 2 \theta\right) v^{2}
$$

The torque of electric origin is then

$$
T^{e}=\frac{\partial W_{e}^{\prime}(v, \theta)}{\partial \theta}=-C_{1} \sin 2 \theta v^{2}
$$

For $v=v_{0} \sin \omega t$

$$
\begin{aligned}
& T^{e}=-C_{1} V_{o}^{2} \sin 2 \omega t \sin 2 \theta \\
& T^{e}=-\frac{C_{1} V_{o}^{2}}{2}(\sin 2 \theta-\cos 2 \omega t \cos 2 \theta) \\
& T^{e}=-\frac{C_{1} V_{o}^{2}}{2} \sin 2 \theta+\frac{C_{1} V_{o}^{2}}{4}[\cos (2 \omega t-2 \theta)+\cos (2 \omega t+2 \theta)]
\end{aligned}
$$

For rotational velocity ω_{m} we write

$$
\theta=\omega_{m} t+\gamma
$$

and then

$$
\begin{aligned}
T^{e}= & -\frac{C_{1} V_{o}^{2}}{2} \sin 2\left(\omega_{m} t+\gamma\right) \\
& +\frac{C_{1} V_{o}^{2}}{4}\left\{\cos \left[2\left(\omega-\omega_{m}\right) t-2 \gamma\right]+\cos \left[2\left(\omega+\omega_{m}\right) t+2 \gamma\right]\right\}
\end{aligned}
$$

This device can behave as a motor if it can produce a time-average torque for $\omega_{m}=$ constant. This can occur when

$$
\omega_{m}= \pm \omega
$$

