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CHAPTER 6

FIELDS AND
MOVING MEDIA

6.0 INTRODUCTION

In Chapter 1 we reviewed the basic postulates and definitions of electro-
magnetic theory. We defined the quasi-static electromagnetic field theory
suitable for efficient analysis of low-frequency, low-velocity electromechan-
ical systems. In Chapter 2 we used the quasi-static electromagnetic equations
to calculate lumped parameters for important classes of electromechanical
systems. The effect of mechanical motion on the electric or magnetic fields
was accounted for by allowing the electrical lumped parameters to have a
dependence on the mechanical displacements. In Chapter 3 this lumped-
parameter model was used to determine the electric or magnetic forces on the
mechanical system. We were then prepared for the study in Chapters 4 and 5
of the dynamics of lumped-parameter electromechanical systems.

In this chapter we return to the field description introduced in Chapter 1.
This is necessary if we are to extend the class of electromechanical situations
with which we can deal beyond the lumped-parameter systems of Chapters
2 to 5. In subsequent chapters we shall be treating continuum systems,
that is, those in which both the electrical and mechanical parts of the system
are described, at least in part, by partial differential equations. This necessi-
tates a field description of the electromechanical coupling.

Even if we are concerned only with lumped-parameter systems, a field
description of the electromechanical interaction provides a useful alternative
to the lumped-parameter models of Chapters 2 to 5. In many cases forces of
electrical origin can be most easily deduced from the fields themselves, thus
bypassing the computation of lumped parameters and an energy function.
Similarly, the effects of material motion on the electrical system can be
deduced from field considerations. On the other hand, an understanding of
lumped-parameter systems, based on the viewpoint of Chapters 2 to 5,
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provides considerable insight into what is required of a field description that
includes effects of moving media. By the time this chapter is completed, the
reader should be acquainted with Appendix B, in which the subject of
quasi-statics is reviewed.

A simple example explains how the following sections lead to a generaliza-
tion of electromagnetic theory to include the effects of material motion. A
disk of copper is shown in Fig. 6.0.1a as it moves with velocity v into a region
of flux density B imposed by a magnet. (We could do this experiment by
attaching a handle to the disk so that we could wield it through the magnetic
field.) Our lumped-parameter model provides a qualitative description of
what happens. Suppose we model the disk as a one-turn, perfectly conducting
loop shorted through a resistance, as shown in Fig. 6.0.1b. Then, as the loop
enters the magnetic field region, it links an increasing flux 2 from the imposed
magnetic field B, and an induced current i flows in a direction that induces
a magnetic field which tends to cancel the flux of the imposed field B. As the
loop enters the field, this current i, interacting with B, gives rise to a force
tending to retard the motion. As we know from Section 5.1.3, the nature of
this force depends on the resistance R of the loop. For a copper disk ofreason-
able size, as we move it through the magnetic field, it is likely that there
would be an impression of passing it through a visc6us liquid. The important
point is that there is a magnetic force on the disk, hence a current within the
disk.

Suppose that we are to analyze this problem in terms of fields. As discussed
in Chapter 1, we are concerned with solutions to field equations for a quasi-
static magnetic field system (equations summarized in Table 1.2).

V x H = J,, (6.0.1)

V B = 0, (6.0.2)

V iJf = 0, (6.0.3)

aB
Vx E = - (6.0.4)

at'

B = p,(H + M) (M ~ 0 for copper). (6.0.5)

In addition, there are boundary conditions on the surfaces of the disk and
magnet. Also, we need the continuum equivalent of Ohm's law, for that
was used in the lumped parameter model to explain the experiment. The
necessary constituent relation was introduced in Chapter 1 as (1.1.9) and is

J, = aE (6.0.6)

where a is the electrical conductivity of the disk material. One approach to
solving the obviously difficult problem at hand is to guess a reasonable
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Fig. 6.0.1 (a) As the copper disk moves into the
field B, there is an induced current i which interacts
with B to retard the motion; (b) conducting loop
equivalent to the disk of copper.

solution and show that it satisfies all of the equations and boundary condi-
tions. In the absence of the moving conductor we have the fields H = H,,
E = 0, B = • 0oH, and J, = 0, where H, is a function of position but is
independent of time. By definition this solution satisfies (6.0.1) to (6.0.6).
In fact, it satisfies these equations and boundary conditions even as the disk
passes through the magnetic field!

What we have found is that our field equations in the form given do not
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account for the experimental result. If there is no current in the disk, there is
no force. Yet both the simple experiment and the lumped parameter model
show that there is a force.

We might suspect that (6.0.1) to (6.0.6) could not possibly account for the
effect of the moving medium because they do not involve the velocity v. This,
in fact, is true, but note that the boundary conditions could depend on the
mechanical motions.

We are now faced with the question, how do we alter (6.0.1) to (6.0.6) to
account for the effects of the moving medium? At least one of these equations
is not correct if there is material motion. One possibility is that we left out
important effects by approximating the system as quasi-static; but the
lumped parameter model explains the induced force on the disk and that
model is based on (6.0.1) to (6.0.5), the quasi-static field equations. We are
therefore led to the conclusion that the culprit in our description is (6.0.6.)

Equation 6.0.6 is a constituent relation that represents the conduction
process in a certain class of materials discussed in Section 1.1.1. Hence not
only is it a law deduced from experiments [(6.0.1) to (6.0.6) are in that
category] but it is found to hold for certain media in a particular state: the
media are at rest. To analyze our experiment we must know what form this
law will take when the material is in motion. Suffice it to say at this point
that our analysis will be correct when we rewrite (6.0.6) as

Jf = oE', (6.0.7)

where J' and E' are the current density and field intensity that would be
measured by an observer moving with the material. Of course, we wish to
formulate the problem in the laboratory reference frame in which the current
density and electric field intensity are J, and E, respectively. Hence our first
objective is to relate the field variables measured in a frame of reference
moving with a constant velocity to the field variables measured in the labo-
ratory frame. We then discuss constituent relations for moving media.

We confine our attention to quasi-static electric and magnetic field systems.
As discussed in the following sections, this means that we consider Galilean
transformations that are appropriate also for Newtonian mechanics. This
approach is the logical extension of a division of electromechanics into
electric and magnetic field systems. The relationship of Galilean and Lorentz
transformations and the relevance of Einstein relativity are discussed at the
appropriate points.

Our treatment of relative motion is based on two postulates: (a) the
equations of motion, including Maxwell's equations, are always written for
an inertial coordinate system, that is, a coordinate system that is traveling
with a velocity of constant magnitude and fixed direction; and (b) the laws of
physics (e.g., Newton's laws and Maxwell's equations) are the same in every

· __II_ 1~__1__
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inertial coordinate system. These postulates are normally associated with
Einstein relativity but they are also valid for Galilean systems.*

In Sections 6.3 and 6.4 examples that demonstrate how field transforma-
tions, boundary conditions, and constituent relations (the subjects of Sections
6.1 to 6.3) are used in the analysis of practical problems are considered.
Emphasis is given to the magnetic field system; Section 6.4 is devoted to a
class of rotating machines we were not prepared to discuss in detail in Chapter
4. These commutator-type machines, which are also of considerable practical
significance, illustrate the fundamental point of this chapter.

6.1 FIELD TRANSFORMATIONS

In this treatment we are interested in field phenomena that occur in systems
with material media in relative motion. The Lorentz force was introduced
as the definition of the E and B fields in (1.1.28) of Chapter 1:

f = qE + qv x B. (6.1.1)

This expression states that a charge q in motion with velocity v with respect
to an observer will experience the force f when subjected to the fields E and B.
Because Newton's laws must be the same in all inertial reference systems,
another observer in a different reference frame will measure the same force
on the charge but the charge will have a different velocity. It should be clear
then that the two observers will measure different values of electric field
intensity and magnetic flux density. The object of this section is to find the
relations between electromagnetic quantities that are measured by two
observers in uniform relative motion.

We have already stated that when an observer defines electromagnetic
quantities he does so with the understanding that they are defined in his
reference frame (coordinate system). Hence they are related by Maxwell's
equations written in his coordinate system. It is a postulate of special relativity
that physical laws, such as Maxwell's equations, must be the same in all
inertial coordinate systems. We use this postulate to determine the relations
between electromagnetic quantities measured in different inertial coordinate
systems.

We define two inertial coordinate systems r and r' which are moving with a
constant relative velocity vr. The times t and t' measured by observers in the
two coordinate systems are assumed to be the same

t = t'. (6.1.2)

* For discussions of the postulates and consequences of the special theory of relativity see,
for example, J. D. Jackson, ClassicalElectrodynamics, Wiley, New York, 1962, Chapters
11 and 12; L. Landau and E. Lifshitz, The ClassicalTheory of Fields, Addison-Wesley,
Reading, Mass., 1951, Chapters 1 and 2.
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Fig. 6.1.1 Two inertial coordinate systems in relative motion.

We select the origins of the coordinate systems to coincide at t = 0. The
relative geometry at a time t is illustrated in Fig. 6.1.1, from which we can
obtain the relation between r and r', the instantaneous position vectors of
point P, as measured in the two coordinate systems

r' = r - v't. (6.1.3)

Equations 6.1.2 and 6.1.3 define a Galileancoordinatetransformationbetween
inertial coordinate systems. We now show that this transformation is con-
sistent with the quasi-static Maxwell equations. An analogous procedure can
be used to show that the Galilean transformation is also consistent with
all mechanical equations of motion introduced in Chapter 2 or in later
chapters.

It is worthwhile to interject at this point that the general form of Maxwell's
equations cannot be transformed consistently by means of the Galilean
transformation. This, in fact, is the basis for a relativistic treatment, which
demands that the transformation be consistent (that the equations be invari-
ant) and results in the Lorentz transformation.* Because the relativistic
terms usually make no significant contribution to the electromechanics, it is
most convenient to work with the quasi-static equations from the outset, as
is done here. This avoids our having to discuss effects that we would end up
neglecting in a practical context.

We obtain our transformations for field variables from the differential
equations; consequently, before we derive the transformations, we need to
consider the differential operators in the two coordinate systems and how
they are related. The space differential operator V for cartesian coordinates

* For the relativistic treatment see, for example, J. A. Stratton, Electromagnetic Theory,
McGraw-Hill, New York, 1941, pp. 59-82.
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z, y, z of the unprimed coordinate system r is

V= (i, -+ il + i ). (6.1.4)

The space differential operator V' for coordinates x', y', z' of the primed
coordinate system r' is

V' = i + - +i, . (6.1.5)Sax' ay' 8z'f

To determine the relation between V and V' we first write out the three
coordinates of the vector equation (6.1.3).

x' = x - v.'t, (6.1.6a)

y' = y - v"rt, (6.1.6b)

z' = z - vz't. (6.1.6c)

Consider a functionf'(x, y, z, t) which can also be written asf'(x', y', z', t')
by making substitutions from (6.1.2) and (6.1.6). The gradient of this function
in the primed coordinate system is

_ af' aj' af'
'f' = i + i + i--. (6.1.7)

ax' ay' az'

The chain rule of differentiation* is used to write

af' af' ax ' f'ay' af' az' af' at'
+ + + (6.1.8)

ax ax, ax ay' ax az' ax at' ax

It is evident from (6.1.2) and (6.1.6) that

ax' ay' az' at'- 1; - - , (6.1.9a)
ax ax ax ax

ay 1 ax 0, (6.1.9b)
ay ay ay ay

az' ax' ay' at,az' 1; ax' a at' - 0. (6.1.9c)
az az az az

We now use (6.1.8) and (6.1.9) with (6.1.7) to establish that

V'f' = Vf'. (6.1.10)

The scalar functionf' may be a component of a vector; therefore we can use

* P. Franklin, Methods of Advanced Calculus, McGraw-Hill, New York, 1944, Chapter 2.

__1·_·1__1~1 · ~I___I__
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this same formalism to establish that for any vector A'(x', y', z', t') the space
derivatives can be written as

V' A' = V A', (6.1.11)

V' x A' = Vx A'. (6.1.12)

The same mathematical techniques are used to establish the relation between
time derivatives. We again assume a function f'(x', y', z', t') and write the
time derivative in the unprimed system as

af' f' at' af' x af' ay' af az'+ + + (6.1.13)at at' at ax' t ay' at az' at
From (6.1.2) and (6.1.6) it follows that

at' ax'
- 1; -- v;,at at

(6.1.14)
ay' az'

-- v,,r; -- v=--at at
Substitution of these results into (6.1.13) yields

af' af' ( a a _Iat- at' v -+- a + v+ f'. (6.1.15)at at, ax' ay, az'
The term in parentheses can be written as v' - V'; thus (6.1.15) is written in
the form

af' af'
- -- (v . V')f'. (6.1.16)at at'

We use (6.1.10) to write this result in the alternative form

af' af'af= + (v V)f'. (6.1.17)
at' at

The functionf' can be a component of a vector; thus, if we define a vector
A'(x', y', z', t'), the same mathematical process leads to

aA' aA'
-= - + (v - V)A'. (6.1.18)at' at

Suppose that the unprimed frame is the fixed or laboratory frame. Then,
from the left-hand side of (6.1.18) it is clear that the right-hand side is the rate
of change with respect to time of A' for an observer moving with velocity v'.
This derivative, written in terms of the coordinates (x, y, z, t) of the fixed
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frame, is used not only in this chapter but in many of the chapters that
follow. Hence it is designated

DA' _ aA'
DA- + (v' -V)A' (6.1.19)
Dt at

and is called the substantial or convective derivative. An example will help
to clarify the significance of this derivative.

Example 6.1.1. To illustrate the significance of (6.1.19) consider an example in which
A' is the displacement of a surface from the x-z plane given by

A' = (z, t)i4, (a)

as shown in Fig. 6.1.2a. The function $ gives the y-coordinate of the surface. At a given
position on the surface this y-coordinate has the same value, no matter whether it is viewed
from the fixed frame or from a (primed) frame moving in the x-direction with velocity
vr = Vi.; that is, A' = A and C' = for this particular case. If we evaluate (6.1.19), using
(a), it follows that

DA' / 8~
- = + V I,. (b)Dt Ft ax Y.

X

vtjY A Y'

F->-X
+ -I-

(b)

Fig. 6.1.2 (a) A surface described by y = ý(x, t) has an elevation above the x-z plane
which is the same whether viewed from the moving (primed) frame or the fixed frame
(6' = ý); (b) $ is independent of position so that only the first term in (6.1.19) makes a
contribution to D/Dt; (c) ý is independent of time and only the second term in (6.1.19)
makes a contribution.

-I-- - -
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The significance of the two terms in this expression can be understood by considering
limiting cases in which they, individually, make the sole contribution to the substantial
derivative.

Figure 6.1.2b shows a surface ý that is independent of position (x or x') but has a dis-
placement that varies with time. Then the second term in (b) is zero and the rate of change
for an observer moving with velocity V is the same as for a stationary observer. This we
would have known from Fig. 6.1.2b without recourse to a mathematical equation.

In Fig. 6.1.2c the surface elevation is independent of time, since ý =-(x) and the rate
of change of ý with respect to time for the fixed observer is zero. By contrast the time rate
of change for an observer moving with the velocity V is

DA' a8.
- -V I,. (c)

This result is not surprising either, because an observer in the moving frame travels to the
right with a velocity V and sees a deflection ý that increases in proportion to the slope of the
surface a8/ax and in proportion to the velocity V. In particular, if

SSx, (d)
then from (c)

DA'
Dt - VSi'. (e)

This result could be obtained by inspection of Fig. 6.1.2c.

We shall find it useful later to write (6.1.18) in a different form. Because vr

is constant, a vector identity* makes it possible to write (6.1.18) in the form

aA' aA'
'- a + v'(V - A') - V x (v' x A'). (6.1.20)

We are now in a position to obtain transformations for electromagnetic

quantities from the field equations for magnetic and electric field systems.

6.1.1 Transformations for Magnetic Field Systems

The differential equations that define the relations of the field quantities to
sources in quasi-static magnetic field systems were given in Section 6.0 (6.0.1)
to (6.0.5) and are repeated here for convenience:

Vx H = Jf, (6.1.21)

V -B = 0, (6.1.22)

V - J = 0, (6.1.23)

aB
Vx E = - (6.1.24)

t'

B = to0(H + M). (6.1.25)

* V x (a x b) = (b V)a - (a . V)b + a(V . b) - b(V . a).
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These equations describe the field quantities measured by an observer who
is fixed in the unprimed inertial coordinate system of Fig. 6.1.1.

It is a postulate of special relativity that physical laws must be the same in
any inertial coordinate system. Consequently, we write the equations to
describe the field quantities measured by an observer who is fixed in the
primed inertial coordinate system of Fig. 6.1.1 as

V' x H' = J;, (6.1.26)

V'- B' = 0, (6.1.27)

V' -J' = 0, (6.1.28)

aB'
V' x E'= - , (6.1.29)

at, '

B' = Mo(H' + M'). (6.1.30)

Use is now made of (6.1.11), (6.1.12), and (6.1.20) to express (6.1.26) to
(6.1.29) in the equivalent forms

V x H' = J', (6.1.31)

V. B' = 0, (6.1.32)

V J; = 0, (6.1.33)

aB'
V x (E' - v' x B') = - (6.1.34)

at

We have made use of (6.1.32) to simplify the form of (6.1.34).
It has been postulated that (6.1.31) to (6.1.34) describe the same physical

laws as (6.1.21) to (6.1.24). A comparison of the two sets of equations
shows that a consistent set of transformations which satisfies this requirement
is

H' = H, (6.1.35)

J = J,, (6.1.36)

B' = B, (6.1.37)

E' = E + v' x B. (6.1.38)

We also use (6.1.35) and (6.1.37) with (6.1.25) and (6.1.30) to obtain the
transformation for magnetization density

M' = M. (6.1.39)

The transformations of (6.1.35) to (6.1.39) relate the values of electro-
magnetic quantities in a quasi-static, magnetic field system that would be

II ___··
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measured by two observers in relative motion with constant relative velocity
v' at a particular point in space at a given instant of time. Note that there is
no contradiction or inconsistency among these transformations as there
would have been had we kept terms such as the displacement current in
Ampbre's law. Note also that the transformation for free current density
(6.1.36) indicates that current flow by the convection of net free charge is
consistently neglected in a magnetic field system. We can now return to the
integral form of the magnetic system equations (Table 1.2) to see that the
definition of E' postulated there is consistent with what we have found here.
Still another derivation of the integral form of Ampere's law for deforming
contours of integration is given in Section B.4.1.

It is interesting to interpret (6.1.38) in terms of the Lorentz force (6.1.1).
Consider a charge q at rest in the primed coordinate system. The force
measured by an observer in that system is simply

f' = qE'.

An observer in the unprimed system who measures fields E and B will see
the charge moving with a velocity v' and will therefore describe the force as

f = qE + qv' x B.

The transformation of (6.1.38) is just the relation between E and E' that must
exist if the force on the charge is to be independent of the coordinate system
in which it is expressed. Some writers actually use the Lorentz force to obtain
the transformation for the electric field rather than the differential equations
as we have.* Although this can be done, it is important to see that there is a
close connection between the field transformations and the field equations.
The field equations for the magnetic field systems do not include the dis-
placement current, and it would be inconsistent to use field transformations
based on equations that did not include this same approximation. For this
reason it is not surprising that in the next section a different set of field trans-
formations is found for the electric field systems.

Example 6.1.2. The most interesting of the field transformations introduced in this
section is given by (6.1.38) and it is important to understand the close connection between
this expression for E' in terms of the fields in the fixed frame and the lumped parameter
models of preceding chapters. For this purpose consider the idealized problem shown in
Fig. 6.1.3, in which a pair of perfectly conducting plates are shorted by a conducting bar.
The bar moves to the right with the velocity Vand there is a uniform magnetic flux density
B imposed in the z-direction by an external source. We assume that the plates are terminated
at the left in an essentially open circuit so that no currents flow to make additions to the
field B.

* R. M. Fano, L. J. Chu, and R. B. Adler. ElectromagneticFields, Energy, and Forces,
Wiley, New York, 1960, p. 390.
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Fig. 6.1.3 A pair of parallel perfectly conducting plates are short-circuited by a moving
perfectly conducting bar. Because of the magnetic field B, a voltage v is induced which
can be computed either by integrating the induction equation around the fixed loop C'
that passes through the bar or by integrating the induction equation around a loop C that
expands in area as the bar moves to the right. The field transformation of (6.1.38) guar-
antees that both integrations will give the same result.

First recall how the voltage v is computed in Chapter 2. A contour C, as shown in Fig.
6.1.3, passes through the perfectly conducting bar. Then the induction equation is written
in the form (2.1.6) and (2.1.7)

E' dl= - B n da, (a)

where E' is the electric field in the frame of the conductor. Hence the integral of E' along
the contour a-c-d-b makes no contribution and (a) reduces to the familiar form

S= , (b)

where

A = B. n da= - hB. (c)

In the viewpoint represented by this derivation the voltage v arises because the contour C
is expanding, thus enclosing more magnetic flux. In particular (b) and (c) give

v = -hBV. (d)

The field transformations make it possible to take an alternative approach to this problem.
The integral form of the induction equation can also be written for a contour that is fixed
in space

E dl= - B.nda (e)

This expression has the same form as (a), but now C' and S' are fixed and E is the electric
field intensity evaluated in the fixed frame. In the present example we can consider the

___·__
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contour C' shown in Fig. 6.1.3, but even though this contour has the same instantaneous
position as before it is now fixed in space rather than moving. As a direct consequence the
right-hand side of (e) vanishes (remember, we assume that B is constant). If we further
recognize that the integral of E through the perfectly conducting plates from a-c and d-b
makes no contribution, (e) reduces to

Edl + fEdl= 0. (f)

In the region in which the terminals are located we assume (as in the preceding approach)
that there is no time-varying magnetic field so that E = -- VO and

fE dl= - ( - = -V- ()

Hence (f) reduces to

v = E- dl. (h)

The remaining integration from c-d must provide the voltage v. Note that this "speed
voltage" is given by the term on the right in (a), but is now accounted for by the term on
the left in (e). This term can be evaluated by recognizing that because E' = 0 in the bar
(6.1.38)

E = -v X B = VBi5 . (i)

This result can be incorporated into (h) to give

v = -hBV, (j)

which will be recognized as the same result obtained with the deforming contour of

integration (d).

6.1.2 Transformations for Electric Field Systems

The differential equations that define the fields and their relations to
sources in quasi-static, electric field systems were given in Table 1.2.

V x E = 0, (6.1.40)

V. D = pf, (6.1.41)

V • J, = - -, (6.1.42)at
aD

V x H = J +-, (6.1.43)
at

D = EOE + P. (6.1.44)

These equations describe the field quantities measured by an observer who is

fixed in the unprimed inertial coordinate system of Fig. 6.1.1.

Our procedure here is analogous to that of the preceding section. We
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recognize, by postulate, that these physical laws must be the same in any
other inertial coordinate system. We write them for the primed inertial
coordinate system of Fig. 6.1.1 as

V' x E' = 0, (6.1.45)

V'. D' = pf, (6.1.46)

J= - , (6.1.47)

atD'

V' x H' = J' + (6.1.48)
at, (6.1.48)

D' = E' + P'. (6.1.49)

We now use (6.1.11), (6.1.12), (6.1.17)*, and (6.1.20) to express (6.1.45) to
(6.1.48) in the forms

V x E' = 0, (6.1.50)

V - D' = p;, (6.1.51)

Vo(J; + pv') -- , (6.1.52)
at

aD'
V x (H' + v' x D') = J; + pfv' + (6.1.53)ft

We have used (6.1.51) to obtain (6.1.53).
Using the postulate that (6.1.40) to (6.1.43) express the same physical

laws as (6.1.50) to (6.1.53) we obtain the following consistent set of trans-
formations:

E' = E, (6.1.54)

D' = D, (6.1.55)

pf = pf, (6.1.56)

H' = H - v' x D, (6.1.57)

Ja = Jf - pv T. (6.1.58)

We use (6.1.54) and (6.1.55) with (6.1.44) and (6.1.49) to obtain the trans-
formation for polarization density

P' = P. (6.1.59)

Note that these transformations are consistent with those postulated in

* Remember vr is constant, so (vr . V)f' = V. (v'f).
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Section 1.1.2b to express the integral form of the equations for an electric
field system. Yet another derivation of these integral laws is given in Section
B.4.2.

Example 6.1.3. The simple significance of the field transformations for the electric
field systems can be illustrated by means of the parallel-plate capacitor shown in Fig. 6.1.4.
Here a battery is used to induce surface charges on the plates, as shown. Hence in the
laboratory (unprimed) frame there is an electric field intensity between the plates related
to the surface charge density by

E = --y,

whereas there is no magnetic field H. (We assume here that there are no external currents
that would induce a magnetic field in the laboratory frame.) For the purpose of the example
consider that the plates have infinite extent in the x-direction. Then, according to the
electric field transformations, an observer in the moving frame of Fig. 6.1.4a would measure
the magnetic field intensity (6.1.57)

H' = - VeEiz = - Vai z.

This magnetic field is present in the moving frame because in that frame of reference the
surface charges give rise to surface currents. These currents induce the field H'. To see this,

F

Kf = afVil

H' OD E'= (o0f/o)iy

+++ +

K' = - or Vix

(b)

Fig. 6.1.4 (a) A parallel-plate capacitor is biased by a voltage source so that surface
charges of opposite polarity are induced; (b) the fields in the moving frame can be found
by computing the magnetic field induced by the convection of the surface charges or by
using the field transformation of (6.1.57).

z'

--z X
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consider that the plates are being viewed from the moving frame of reference, as shown in
Fig. 6.1.4b. In this frame surface currents flow in the x-direction, thus giving rise to the
magnetic field of (b). Note that implicit to this reasoning is the transformation for the free
current density (6.1.58).

In this and the preceding section we have obtained transformations that
describe the relations between the field quantities measured by two observers
in relative motion with a constant relative velocity. These transformations
have been obtained for quasi-static systems and are valid only for such sys-
tems. We have stated that these transformations are consistent. By this we
mean that we can use our transformation relations to transform field quan-
tities repeatedly back and forth between two inertial reference frames without
generating inconsistencies. A summary of transformations is given in Table
6.1.

6.2 BOUNDARY CONDITIONS

It is often found that electrical properties change significantly over dis-
tances that are infinitesimal with respect to significant dimensions of an
electromechanical system. Such changes occur at the surface of a medium or
at an interface between two media. In such cases we can represent the abrupt
changes mathematically as spatial discontinuities in the electromagnetic
variables. It is these discontinuities that provide boundary conditions on the
electromagnetic variables.

The conventional treatment in electromagnetic theory considers conditions
at stationary boundaries.* Because we are interested here in electromechanics
we require boundary conditions at moving boundaries. The conditions
derived are correct only for quasi-static systems.

First, we define the surface 1, illustrated in Fig. 6.2.1, which separates
medium a from medium b. Media a and b move with velocities va and v9
with respect to the inertial coordinate system r in which all field and source
quantities (E, B, P, M, J,, p,) are defined. Superscripts a and b indicate the
medium in which a quantity exists. The normal vector n is defined as normal
to the surface I and has a positive direction from medium b to medium a,
as shown.

In order that the surface Z may be a well-defined boundary between the
two media, the normal components of the two velocities va and vb must be the
same at the surface; thus

n - (va - v b) = 0. (6.2.1)

If this condition is not satisfied, the two materials are diffusing through each
other or moving apart, leaving a vacuum between them. In either case a

* Fano et al., op. cit., pp. 86-89.
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Table 6.1 Differential Equations, Transformations, and Boundary Conditions for Quasi-static Electromagnetic Systems with
Moving Media

Differential Equations

V x H = J, (1.1.1)

V. B = 0 (1.1.2)

V J, 0 (1.1.3)

a13
x E --- (1.1.5)

at

B = po(H + M)

VxE = 0

V.D = pf

(1.1.11)

(1.1.12)

V Ji= -- (1.1.14)at
aD

V x H = J + - (1.1.15)at

Transformations

H' = H (6.1.35)

B' = B (6.1.37)

J; = J, (6.1.36)

Boundary Conditions

n X (H a - Hb) = K_

n (B a - Bb ) = 0

n . (Ja _ J1 b) + V, • Ky = 0

E' = E + vr X B (6.1.38) n X (E a - Eb) = vn(B a - Bb )

M' =M

E' = E

D' = D

P; = py

J; = Ji- pfv
r

(6.1.39)

(6.1.54)

(6.1.55)

(6.1.56)

(6.1.58)

(6.2.14)

(6.2.7)

(6.2.9)

(6.2.22)

n x (E a - Eb) = 0 (6.2.31)

n -(Da - D b) = a0 (6.2.33)

n (Jfa - jfb) + V Kf = (pf(a- p
b) 

_ (6.2.36)at

H' = H - vr x D (6.1.57) n X (Ha - Hb) = Kf + uvn X [n X (Da - Db)] (6.2.38)

(1.1.13) P' = P (6.1.59)

Magnetic
field
systems

Electric
field
systems

D = EOE + P
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well-defined boundary of the type postu- Medium a
lated does not exist. From the electromag-
netic theory viewpoint no requirement is
necessary on the tangential velocities of
the media at the boundary. Consequently,
the media can slide past each other at the
boundary with no restrictions on the tan-
gential components of the velocities. We
shall find that the boundary conditions Medium b
depend on the normal component of the Fig. 6.2.1 Surface separating two
velocity of the boundary. One or both media.
media may be vacuum.

In general, the surface X is not plane and it is moving and deforming.
When a mathematical description of the surface is given, we must be able to
evaluate the normal vector n. In the coordinate system r a surface can be
described by the general functional form

f(r, t) = 0. (6.2.2)

The normal vector n can then be evaluated as

n- f (6.2.3)
fl I

This statement is familiar from electromagnetic field theory; that is, if we
assume that (6.2.2) defines one equipotential surface of the set

f(r, t)= -,

where 0 is the potential, the electric field is the negative gradient of the
potential and is normal to an equipotential surface. Hence we can think of
the normal vector n, defined by (6.2.3) as the negative of the normalized
electric field, evaluated at the zero-potential surface.

Example 6.2.1. To illustrate the manner in which a surface is represented by an expression
like that in (6.2.2), consider the surface defined in Fig. 6.2.2 in which the height of the
surface above the x-z plane is given by

y = A sin wt cos - + B. (a)

where A, B, c, and I are positive constants. This represents a surface whose position is
independent of z and whose height varies as the cosine function with x. The amplitude of
the variation in height at a fixed position x is a sinusoidal function of time.

To obtain the equation for the surface in the form of (6.2.2) we write

2
•r

f(x, y, t) = y - A sin ot cos - B = 0.
I

___I_ _~__ · ~
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wt

z

Fig. 6.2.2 Example of surface that varies in space and time.

Taking the gradient of this expression yields

2-irA 27x
Vf = ix  sin wt sin + i,.

The magnitude of this gradient is

( 4Tr2A 2 2_

IVf= 1 + - -sin2 wt si 2

and the normal vector is

ix(27rA/l) sin ot sin (27rx/l) + i (c)
n = (c)V/1 + (4Tr

2
A

2
/1

2) sin2 wt sin2 
(
2

7rx/l)

This normal vector becomes i, at

2
rrx

- n; n = 0, 1, 2 ....

that is, on the crests and in the troughs of the corrugations the normal vector is vertical.
At other values of x the normal vector is not vertical and its direction can be determined
from (c). The direction of the normal can be reversed by defining f as the negative of (b).
Consequently, we can label media a and b and make sure that the definition off yields a
normal vector as described in Fig. 6.2.1 or we can definef and label the materials after the
direction of the normal has been determined.

6.2.1 Boundary Conditions for Magnetic Field Systems

For studying boundary conditions in a quasi-static, magnetic field system
we assume that the surface I carries a free surface current density Kf (amperes
per meter) and a free surface charge density a, (coulombs per square meter).
The free surface current density Kf is part of the primary excitation, whereas
the surface charge density is a quantity that can be determined from auxiliary
relations after the fields have been determined.

~
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Medium a

Medium b

Fig. 6.2.3 Geometry for calculating discontinuities in normal components of field vectors.

Consider first the equations in integral form that determine how the sources
excite the fields. They were given in (1.1.20) and (1.1.21) and are

H di =fJ, "i~ da, (6.2.4)

B . inda = 0. (6.2.5)

Here we have introduced is as the unit vector perpendicular to the area of
integration so that it can be distinguished from the vector n normal to the
surface X. To find the boundary condition imposed by (6.2.5) we define a
small, right-circular cylindrical volume V, enclosed by a surface S consisting
of the top and bottom surfaces of areas S, and a lateral surface of height 6
and area S 2, as shown in Fig. 6.2.3. The volume V is fixed in the inertial
coordinate system r and is so oriented that it intersects the boundary E as
shown in Fig. 6.2.3. The surface S, is small enough that the boundary Z
can be assumed plane in its vicinity and the top and bottom surfaces S, are
parallel to the boundary E. Hence the vector n is normal to both E and S,.
We assume that the height 6 of the pillbox is so small that the lateral area S,
is much smaller than the area of surface St. When we integrate (6.2.5) over
the surface S and assume that S, is so small that B does not change appreci-
ably over S1, we obtain

(B a . n)St - (BI - n)St = 0. (6.2.6)

We cancel S, from this expression to obtain

n - (Ba - Bb) = 0. (6.2.7)
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Equation 6.2.7 states that the normal component of B must be continuous at
the boundary. This is the same result obtained in the electromagnetic theory
of stationary systems; thus the motion has not affected this boundary
condition.

Like the flux density the free-current density J, in a quasi-static magnetic
field system has no divergence [see (1.1.3) of Table 1.2]. However, when
deriving the boundary condition on J,, the integral expression of (1.1.22)
of Table 1.2 must be used with due regard for surface currents at the dis-
continuity. The current density J,, unlike B, can be singular. If we use
(1.1.22) (f J, i, da = 0) with the pillbox in Fig. 6.2.3 and neglect the
contribution of volume current density J, over the lateral surface S2, we
obtain

(J,f. nn) - (J' n)S1 + K, i dl = 0. (6.2.8)

This is simply an expression of the fact that current into the pillbox from the
two media must equal surface current across the contour C, because no
appreciable free charge density (volume or surface) can exist in a magnetic
field system. Dividing (6.2.8) by S, and taking the limit as Sx --0 yields the
desired boundary condition

n (Ja - Jfb) + VT. K, = 0, (6.2.9)
where

cK,.indl
VE -K,= lim (6.2.10)

1-.o0 St

is the surface (two-dimensional) divergence of K, applied in the plane of the
surface 2: at the point in question.*

We consider next the boundary condition imposed by (6.2.4). For this
purpose we use the contour C which encloses the open surface S and is
fixed in the coordinate system r. The contour instantaneously intersects the
boundary, as illustrated in Fig. 6.2.4. The surface S is a plane rectangle and is
small enough for the boundary I to be assumed plane in its vicinity. The
surface S is perpendicular to E and the height 6 ofthe contour is much smaller
than the length L.

S<< L

* The two-dimensional divergence is simply the sum of the derivatives of the two orthogonal
components of a vector in the surface with respect to the distance in the component direc-
tions; for example, assume a surface Z with normal vector n = iz.A vector A lying in the
surface I will have only x- and y-components A = Adix + Ai, and the surface divergence
of this vector is VE -A = [i,(alax) + i,(alay)l A = 8AA,/ax + aA1/ay. Note that the
surface divergence in this case is just two terms of the volume divergence.



Boundary Conditions

Medium a

Medium b

Fig. 6.2.4 Contour and surface for determining discontinuities in tangential components
of field vectors.

The three unit vectors n, i,, and i,, shown in Fig. 6.2.4, are mutually orthog-
onal. We assume that the contour C is small enough that fields do not vary
appreciably over its length L. With these assumptions, and ignoring contri-
butions from the ends (6), we integrate (6.2.4) to obtain (after canceling
out the length L)

(H- - Hb) i, = K, i,. (6.2.11)

This expression states that the discontinuity in the tangential component of
H in the direction of i, is equal to the component of K, perpendicular to i,.

Equation 6.2.11 can be put into a more useful form in the following way.
We substitute

i, = i. x n (6.2.12)

into (6.2.11) and use a vector identity* to obtain

[n x (H" - Hb)] . i, = K,. i,. (6.2.13)

By definition, the vector K, lies in the boundary X. The vector [n x (H8 -
HI)] also lies in the boundary Z. The vector i, has an arbitrary direction
except that it also lies in the boundary Z. Therefore from (6.2.13) we obtain
the result

n x (HG - Hb) = K,. (6.2.14)

Note once again that this is the same boundary condition obtained for
stationary systems (it is independent of the boundary velocity).

*a bxc=axb*c.
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We now derive the boundary condition for the electric field by starting
with (1.1.23) written for a fixed contour C:

E  dl= - d f B  i da. (6.2.15)

We integrate (6.2.15) by using the contour C and surface S defined in Fig.
6.2.4. The restrictions on orientation and size in the derivation of (6.2.14)
also apply here. By using the unit vectors and dimensions defined in Fig.
6.2.4 we obtain the contour integral

CE dl = (Ea - E') iL. (6.2.16)

In this expression we have neglected the contribution to this integral from the
sides perpendicular to E because we require that 6 <K L. * The time origin is
defined as the instant in which the surface E coincides with the lower edge
of the contour. Thus, defining the normal component of velocity of the
boundary as

v, = n va = n vb, (6.2.17)

we write the surface integral in (6.2.15) as

B - in da = [B'(6 - vjt) + Bb(vut)] - iL. (6.2.18)

In this expression we have assumed that 6 is small enough that v. does not
change appreciably as the boundary E passes the contour C. Note that this
does not require that v, be a constant, for we shall shortly take the limit in
which -- 0.

We take the time derivative of (6.2.18)

SB - i da = -v,(B - B ). iL

aBa aB b
+ t(B - ") + (6 - vt) + - (V.t) iL. (6.2.19)

at at at I
The time derivatives of the fields are finite in the two media: consequently,
in the limit as 6 --, 0 the term in brackets on the right of (6.2.19) vanishes.
(Note that by definition 6 > vt so that the interval of time during which the
surface is within the volume V is the largest time t with which we are con-
cerned. Hence, as 6 -- 0, so also does the largest value of t.) We equate the
negative of (6.2.19) to (6.2.16) and cancel the length L to obtain

(Ea - Eb) i. = v,(Ba - B) . i. (6.2.20)

* There is the implicit assumption here that although E can be discontinuous at the boundary
it must be finite. Otherwise we could not ignore the contribution to the integral along the
sides of length 6.

~_
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By using the relation
i, = in x n

and a vector identity,* we put (6.2.20) in the form

[n x (Ea - Eb)] . i~ = v,(Ba - Bb) in. (6.2.21)

The vector i, lies in the boundary I but otherwise it has an arbitrary direction.
The vector n x (Ea - Eb) also lies in the boundary Z. The normal component
of B is continuous [see (6.2.7)]; consequently, the vector (Ba - Bb) lies in the
boundary Z. Therefore we conclude from (6.2.21) that

n x (El - Eb) = v,(B - Bb). (6.2.22)

This is the desired boundary condition on the electric field.
We indicate an alternative method of deriving (6.2.22) by putting it in a

different form. We define the velocity v as

v = nv,, (6.2.23)

which is simply the normal velocity of the boundary 1. We now write (6.2.22)
in the form

n x (Ea - Eb) = (n v)(Ba - B b) (6.2.24)

and use a vector identityt with the boundary condition on the normal
component of B (6.2.7) to write (6.2.24) as

n x (Ea - E") = -n x [v x (Ba - Bb)]. (6.2.25)

When we define Ea' and Eb' as

Ea' = Ea + v x Ba, (6.2.26)

Eb' = E b + v x Bb, (6.2.27)

we can rewrite (6.2.25) as
n x (E ' - E') = 0. (6.2.28)

From the transformation of (6.1.38) we recognize that E"' and Eb' are the
electric fields that an observer will measure when he is in a coordinate system
moving with the normal velocity of the boundary. In this coordinate system
the boundary is at rest; consequently, as (6.2.24) indicates, the tangential
component of electric field must be continuous, as it must be in any stationary
system. This idea can be used as the basis for an alternative derivation of the
boundary condition on the tangential component of electric field, once the
condition on a fixed boundary has been obtained. Note, however, that our

*a*bxc=axb c.
t (a . b)e = -ax (b x c) + b(a . c).
+ At least any stationary system in which E is finite everywhere.

1__1_1 1_1
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transformations were derived for an inertial coordinate system. The boundary
condition just derived is not restricted to boundaries that move with a
constant velocity.

Example 6.2.2. Consider the system illustrated in Fig. 6.2.5 in which a surface Z that is
perpendicular to the y-axis moves with a speed v in the y-direction

v = iv.

We assume that the surface Z has an infinite extent in the x- and z-directions so we can
write its instantaneous position y, as

y, = vt.

We have chosen t = 0 as the instant when the surface contains the origin.
The surface Z is immersed in vacuum and carries a uniform surface current density

K, = i3 K.

The system is constrained so that to the right of the surface (y > y') the fields are zero. A
simple experiment in which this physical situation arises is shown in Fig. 6.2.5b, in which
a moving conductor shorts parallel electrodes driven by a current source. Here the moving
short is modeled as being very thin and carrying a surface current Kf. In practice, the moving
short could be a sheet of highly ionized gas moving down a shock tube.

The electric and magnetic fields in the region (y < y,) to the left of the surface Y are to
be found.

We select as the normal vector n the vector i,,

n = iy,

Medium b

Medium a

(a) (0)

Fig. 6.2.5 (a) Plane surface in motion and carrying a surface current density; (b) the
moving surface could constitute the moving conductor that short-circuits parallel plates
excited by a current source distributed along the x-axis.
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and thus medium b is y < y, and medium a is y > y,. Our problem is specified such that

Ea-=O and Ha-=O.

We first use (6.2.14) to find the magnetic field intensity Hb:

i,, X (-HW) = izK1 .

If we write H6 in component form,

Hb = i-H- b + i 1H
6b + jIH?,

we can write the boundary condition as

iH/ - izHe
b 

= izK,.

Equating components in this expression yields

H'b = Kf,

H' = 0.

Thus in vacuum B = p0H and we can use the boundary condition on the normal com-
ponent of B (6.2.7) with the given information that Ho = 0 to arrive at the result

H = 0.

Thus the magnetic field intensity adjacent to the surface in region b is completely determined.
To find the electric field intensity to the left of the moving current sheet we use (6.2.22)

to obtain
i, x [-E b] - -vB b,

from which
Eb = ivp 0oK,.

This is the electric field intensity to the left of the current sheet generated by the moving
discontinuity in magnetic field intensity.

The discontinuity in electric field at the moving interface is necessary if concepts intro-
duced earlier in this and preceding chapters are to remain consistent. We have already
pointed out that the same boundary condition follows from the field transformation. If
the moving surface is placed in the context of the problem shown in Fig. 6.2.5b, it is also
possible to find the electric field behind the surface by using lumped parameter ideas to
compute the voltage V, hence the electric field E between the plates.

6.2.2 Boundary Conditions for Electric Field Systems

For studying the boundary conditions in a quasi-static electric field system
we assume a boundary surface I that carries a surface charge density a,
and a surface current density K, (see Figs. 6.2.3 and 6.2.4). The surface charge
density a, is part of the primary excitation, whereas the surface current
density K, simply accounts for the conduction or convection of charge. The
magnetic field generated by K, can be computed once all of the other fields
are known.

_·_ I ___~_
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Two of the integral equations that determine the fields in a quasi-static
electric field system are (see Table 1.2)

Ef*dl = 0, (6.2.29)

SD. ida = p, dV. (6.2.30)

The results derived in the preceding section can be used to obtain the bound-
ary conditions implied by these equations.

In the preceding section the boundary condition on the tangential com-
ponent of E was derived from (6.2.15) by using the contour defined in Fig.
6.2.4 to obtain the result of (6.2.22). We note that (6.2.29) is simply (6.2.15)
with the right side set equal to zero; consequently, by setting the right side of
(6.2.22) equal to zero, we obtain

n x (Ea - Eb) = 0. (6.2.31)

To derive the boundary condition on the normal component ofD we use the
pillbox-shaped surface of Fig. 6.2.3 with the same restrictions on relative
geometry that were used in deriving (6.2.7) in the preceding section. By
performing the integration (6.2.30) and taking the limit as 6 -- 0, we obtain
the result

(D". n)S1 - (Db. n)S1 = otfS, (6.2.32)

where S, is the area of the top and bottom of the closed surface S. Division
of both sides by S, yields the desired boundary condition

n (DI - Db) = oa, (6.2.33)

which is the same as the corresponding boundary condition for stationary
systems.

When the conductivity of a material is uniform, the free charges have only
a transient existence in the bulk of the material. Surface charges play an
important role in such cases. As we shall see in Chapter 7, the conduction
process in the region of an interface is an important factor in many electric
field systems. For this reason the boundary condition associated with the
conservation of charge equation (Table 1.2)

J - i da = - pfv,dV (6.2.34)

assumes primary significance.
The evaluation of this boundary condition is much like the evaluation of

the boundary condition on current density derived for magnetic field systems
in (6.2.8) to (6.2.10), except that now we must include the effects of volume
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and surface charge densities. Using the pillbox-shaped volume of Fig. 6.2.3
and neglecting the contribution of volume current density J, across the
lateral surface S2, we find that (6.2.34) becomes

Sin . (J - J, ) + K, i dl = dtd [pfSl( - Vnt) + pfbSlv, t + Str].
ic d d[ -

(6.2.35)
In the limit, as 6 -* 0, then Sx - 0, this expression becomes

n (Jf - J,1 ) + V . K, = v,(pf - pb) - -t, (6.2.36)at
where we have used the definition of the surface divergence of surface current
density (V, - K,) given in (6.2.10). It should be pointed out here that surface
current density occurs in electric field systems most often as the convection of
free surface charge density, as indicated by the application of the transforma-
tion in (6.1.58) to surface current density and surface charge density.

Equation 6.2.36 is the boundary condition implied by the conservation of
charge equation. An example will help to clarify the significance of the terms.

Example 6.2.3. An application of the conservation of charge boundary condition that
is considered in Section 7.2 is shown in Fig. 6.2.6. Here two slightly conducting materials
form a common boundary that moves to the right with the velocity Ui,. There are no free
charges in the bulk of the materials in which .J, = aE (see Section 7.2.2). Hence in this
particular case the boundary condition (6.2.36) becomes

OaE,a - obEU + K,, + Ka = - (a)

On the interface the only surface current is due to the convection of free charge af; that is,

K, = 0; K1, = Uo. (b)

Moreover, a1 is related to the electric field through the boundary condition (6.2.33) (we
assume that D = eE in both materials):

a, = EaEa - bEb.  (c)

y Cra, ea

j4 - auE,'

tBoundary moving
J,= b Ey , b with velocity, U

>x

Fig. 6.2.6 A boundary between materials with conductivities a, and Gb and permittivities

Ca and Eb moves to the right with velocity U. Boundary condition (6.2.36) accounts for
conservation of charge in a small section of the boundary.

6.2.2
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It follows that (a) can be written as

aEva - abEb L + Uaf =0. (d)
at ax

Note that (c) and (d) together constitute a single boundary condition on the electric field
intensity at the moving surface. Remember that aaa/8t+ U 8a,/ax is the rate of change with
respect to time for an observer traveling with the velocity U [from (6.1.56) af = a'].
Hence (d) simply states that for such an observer the net current into a small section of the
interface goes into an increase in the surface charge cr .

Equations 6.2.31, 6.2.33, and 6.2.36 are the only boundary conditions
needed to solve problems for the electric fields in most quasi-static electric
field systems. In these systems magnetic fields are generated by time-changing
electric fields. Boundary conditions for these magnetic fields can be obtained
from the integral form of Ampire's law (see Table 1.2)

H - di =f J, i , da + D. in da, (6.2.37)

where C and S are fixed as shown in Fig. 6.2.4. The process is analogous to
that used in deriving (6.2.22) in the preceding section and leads to the
boundary condition*

n x (H4 - Hb) = Kf + v,n x [n x (Da - Db)]. (6.2.38)

Note that this boundary condition is essentially that of (6.2.14) for the
magnetic field system, with an added term to account for displacement
current.

A summary of field transformations and boundary conditions is given in
Table 6.1, which is arranged so that the correspondence of transformations
and boundary conditions with differential equations is emphasized. One of
the most important concepts related in this chapter is the consistency that
must exist among differential equations, transformations, and boundary
conditions.

The most obvious effects on boundary conditions from material motion
are brought in through the normal velocity v,. It must be remembered,
however, that the boundary is itself part of a mechanical system that can
often deform in the presence of magnetic or electric forces. This geometric
effect of the boundary conditions is represented by the normal vector n
and illustrated by Example 6.2.4.

Example 6.2.4. Boundary conditions provide a mechanism by which mechanical
motions can alter electrostatic field solutions. In Fig. 6.2.7 one of a pair of perfectly
conducting electrodes is plane, whereas the other has the sinusoidal dependence on (x, t)

y = A sin wt cos kx + B, (a)

* To show this note that -n x (n x A) is the component of A in the surface to which n
is normal.
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Fig. 6.2.7 Perfectly conducting electrodes at y = 0 and y = A sin owt cos kx + B (where
k = 2•/l) constrained to a constant potential difference.

where the dimension A << B, w is the angular frequency, and k = 2/1 (see Example 6.2.1).
We wish to compute the electric field in the region between the electrodes when they are
at the potential difference Vo and to find the surface charge density on the lower electrode.
It is assumed that the plates have infinite extent in the x- and z-directions.

The important boundary condition is (6.2.31). Because the electrodes are perfectly
conducting, they can support no internal electric field. Hence at the surface of the electrodes

n X E = 0, (b)

where we have set E a = E in (6.2.31). On the lower electrode n = i, and (b) reduces to

Ex(x, 0, t) = 0. (c)

Here we have used the fact that the upper surface position does not vary with z to set

E,(x, y, t) = 0.

The normal vector n on the upper electrode is given by the negative of (c) of Example 6.2.1.
We assume that the amplitude A is small enough (47r2 A2 /12 < 1) to justify setting the de-
nominator of this expression equal to 1. Then

n = -- i~A sin wot sin kx - i,. (d)

The boundary condition (b), applied to the upper electrode, reduces to

nE,(x, Y, t) = nzE,(x, Y, t), (e)

where Y = A sin cot cos kx + B is the position of the upper electrode. If A were zero (two
parallel flat plates) the electric field would be E = (V 0/B)i v . Hence we define a perturbation
electric field e(x, y, t) and let

(B

The perturbations ex and e, are proportional to the amplitude A. Introducing (f) into (e)
[with n, and n, defined by (d)], we have

v 7
ex(x, Y,t) = kA sin cot sin kx I U + e,(x, Y, t) I

U'-'I
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and now, if we ignore terms that are proportional to A2 (compared with terms proportional
to A),

e,(x, B, t) = k sin wt sin kx. (h)
B

Here e, has been evaluated at y = B rather than y = Y because the difference in e~evaluated
at these points is proportional to A2 . The approximate effect of the corrugated surface on
the electric field is found by using (h) and (c) as boundary conditions.

Between the plates the divergence and curl of the electric field are zero [(1.1.11) and
(1.1.12) with no free charge)]. For the two-dimensional case under consideration this gives
two expressions for the perturbation components.

ae, ae,
+e--- 0, (i)

ae _ e , 0. (j)
ay ax

If boundary condition (h) is to be satisfied, e, must have the (x, t) dependence sin oit sin kx.
Hence we assume (and later justify) that

e,(x, y, t) = f(y) sin cnt sin kx. (k)

Then (i) and (j) will be satisfied for all values of t and x only if e, has the (x, t) dependence
sin wt cos kx:

e,(x, y, t) = g(y) sin wt cos kx. (I)

The dependence on (x, t) assumed for e, and e, is justified when we substitute (k) and (1)
into (i) and (j) and find that the functions of x and t cancel out. After carrying out this
process there remain the equations

fk + = O, (m)

S+ kg = O. (n)

This pair of ordinary differential equations has the solution

f = C sinh ky + D cosh ky. (o)

where C and D are arbitrary constants. Remember that e, is proportional to f [see (k)].
Hence, if (c) is to hold for all values of y, D = 0. From (k) and (o)

e,(x, y, t) = C sinh ky sin ot sin kx, (p)

where the constant C follows from boundary condition (h) as

kA V,
B sinh kB (q)

Note that it was our foresight in guessing the (x, t) dependence of (k) that allowed us to
satisfy condition (h) for all values of x and t. We now knowfand therefore can find g from
(n). Hence (1) becomes

e, = -C cosh ky sin ot cos kx.
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In the limiting case in which B << I we can calculate these fields much more easily. This
limiting case occurs when the wavelength I of the corrugation on the upper plate is long
compared with the average spacing B between the plates. We expect a small section to
have the same field as a parallel plate capacitor; that is,

Vo vo VA
E = - - sin cat cos kx (s)

S B + A sin ot cos kx B B2

and
Ex = 0. (t)

If B << I1, then kB <( 1; and in this limit our solution [(f), (p), and (r)] reduces to the
"long-wave" approximation of (s) and (t). In this limit all of the perturbation charges
(those additional charges due to the corrugation) on one plate have image charges on the
opposite plate. In the opposite extreme in which kB > 1 (1 << B) there are few perturbation
charges on the flat plate. To see this we can compute the surface charge density on the lower
plate as

af = Co SO + e,(x, 0, t) , (u)

which [from (q) and (r)] is

[Vo kA Vo sin at cos kxz (v)
I B B sinh kB I *

As kB becomes large, the perturbation part of af becomes small (as kB -+ oo, sinh kB -- oo).
A scheme for finding the deflection of a conducting surfade would measure the charge on

an electrode imbedded in the flat plate. Equation v shows that the perturbation surface
charge density provides the (x, t) dependence of the deflection. The amplitude of a1
however, would be inversely proportional to the wavelengths I to be detected.

6.3 CONSTITUENT RELATIONS FOR MATERIALS IN MOTION

Constituent relations, which are mathematical models of the electro-
magnetic properties of matter, were discussed briefly for stationary media in
Section 1.1. At that point specific models that describe materials in a way that
is useful in this study of electromechanical interactions were presented. As
indicated in Section 6.0, however, the constituent relations expressed for
stationary material may not be correct when the material is moving. In the
next two sections we recast the constituent relations in forms that are correct

when describing material that is in motion with respect to the reference
frame in which electromagnetic quantities are measured. In general, a
medium may be in motion relative to a particular inertial coordinate system
in which we wish to define field and source quantities. We postulate that
constituent relations, as conventionally defined for stationary media, still
hold for moving media, provided they use source and field quantities defined
in an inertial coordinate system with the same velocity as the material at the
instant of time in question. It is therefore assumed that acceleration and rate
of deformation do not affect local material properties. Constituent relations

____II_·___·I_ ____C__· I 
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obtained with this postulate yield predictions that agree to a high degree of
accuracy with experimental results.* To apply this postulate we shall use the
transformations of Sections 6.1.1 and 6.1.2 with the constituent relations
for stationary media given in Section 1.1. Because the transformations are
different for quasi-static electric and magnetic field systems we consider
constituent relations for the two systems separately.

6.3.1 Constituent Relations for Magnetic Field Systems

Reference to the differential equations of Section 1.1 (see Table 1.2) and
the boundary conditions of Section 6.2.1 shows that the fields in a quasi-
static magnetic field system are excited by free current density J,, free
surface current density K,, and magnetization density M. Thus we need
consider here only how J,, K,, and M are affected by field quantities in the
presence of material motion.

Consider first a linear isotropic conducting medium, which, when station-
ary, has the constituent relation introduced as (1.1.9),

J, = AE, (6.3.1)

where a is the electrical conductivity.
We now define an inertial coordinate system r in which we measure the

quantities E, B, and J, as functions of space (r) and time (t). The material
medium moves with respect to this coordinate system with a velocity v(r, t).
In general, the velocity v is different for each point within the material because
it can be translating, rotating, and deforming. We wish to express the
constituent relation describing electrical conduction in terms of quantities
measured in the coordinate system r. To do this we use the postulate given
in the preceding section which states that the constituent relation for the
material at rest is applicable in an inertial coordinate system with respect to
which the material is instantaneously at rest. Thus to express the constituent
relation for the material occupying position r at time t we define an inertial
coordinate system having the velocity

v' = v(r, t), (6.3.2)

that is, v' is a constant with a value equal to the material velocity at position
r at time t. We denote electromagnetic quantities as measured in this moving
coordinate system with primes and apply our postulate along with (6.3.1)
to write

J;(r, t) = o(r, t)E'(r, t). (6.3.3)

* A case in which acceleration effects on conduction are computed is discussed in L. D.
Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Addison-Wesley,
Reading, Mass., 1960, pp. 210-212. These effects are usually ignorable.
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We now use the transformations of (6.1.36) and (6.1.38) to rewrite (6.3.3) as

J,(r, t) = a(r, t)[E(r, t) + v(r, t) x B(r, t)]. (6.3.4)

This equation is the desired result in that it is the relation imposed among
electromagnetic variables expressed in the fixed frame by linear isotropic
electrical conduction in a moving medium.

The functional notation (r, t) has been included in the preceding equations
to make the meanings of the terms more explicit. Equation 6.3.4 is more
compactly expressed without the functional notation as

J, = a(E + v x B). (6.3.5)

Next consider surface conduction on a material with surface conductivity
a, as described for stationary materials by (1.1.10).

K, = as[-n x (n x E)], (6.3.6)

where n is the normal to the surface and [-n x (n x E)J is the component
of E tangent to the surface. When the surface is moving, we use a process
analogous to that used for volume conduction to obtain the result

K, = ao,{-n x [n x (E + v x B)]}. (6.3.7)

The velocity v is the velocity of the surface with respect to the coordinate
system in which the electromagnetic quantities are measured.

The final constituent relation that must be defined for magnetic field
systems is the relation between magnetization density M and magnetic
field intensity H.

The constituent relation for an isotropic, linear, magnetic material was
written as (1.1.6)

M = X,H, (6.3.8)

where X• is the magnetic susceptibility. Using (1.1.4) we wrote

B = pH, (6.3.9)

where the permeability p is defined as

pu = po(1 + XZ•. (6.3.10)

Although the constituent relation as expressed by (6.3.8) or (6.3.9) was
written for stationary material, the transformations of (6.1.35), (6.1.37),
and (6.1.39) show that in a quasi-static magnetic field system B, H, and M
are unaffected by relative motion. Consequently, (6.3.8) and (6.3.9) hold also
when the material is moving with respect to the coordinate system in which
the electromagnetic quantities are to be measured.

-·llll--L·-~llllll --- _·___
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Fig. 6.3.1 A homopolar generator.

Example 6.3.1. As an example of transformations and constituent relations for moving
materials, consider the device illustrated schematically in Fig. 6.3.1. This is a Faraday disk
(also called a homopolar machine or an acyclic machine). Machines with the basic con-
figuration of Fig. 6.3.1 or alternative configurations that operate physically in the same way
are manufactured for supplying dc power at low voltage and high current.* A cutaway
view of one such configuration is shown in Fig. 6.3.2.

With reference to Fig. 6.3.1, the device consists essentially of a right circular cylinder of
conducting material that is rotated about its axis. Electrical contacts, usually made of
liquid metal (see Fig. 6.3.2), are made symmetrically at inner and outer radii. Not shown in
the figure is the electromagnet which produces a uniform axial flux density Bo .

We specify that the applied flux density B0 is constant and that the shaft is driven by a
constant angular velocity source w. The electrical terminals are loaded by a resistance R.
The material of the rotating disk is homogeneous, isotropic, and electrically linear with the
material constants a, o, co. The dimensions are defined in the figure.

We wish to find the terminal voltage and current for all values of load resistance R and
steady-state operation.

It should be clear from an inspection of Fig. 6.3.1 that the current in the disk is radial and
the current density is uniform around the periphery at any radius. Thus the magnetic field
generated by this current density is tangential and has no effect on the terminal voltage.
Hence we neglect the field due to current in the disk. The validity of this assumption
becomes clearer in the analysis to follow.

We select the cylindrical coordinate system r, 0, z shown in Fig. 6.3.1. The cylindrical
symmetry and the uniformity of variables in the z-direction indicate that we can assume

a a
= = 0,

* D. A. Watt, "Development and Operation of a 10KW Homopolar Generator with
Mercury Brushes," Proc. I.E.E. (London), 105A, 33-40, (June 1958). A. K. Das Gupta,
"Design of Self-Compensated High-Current Comparatively Higher Voltage Homopolar
Generators," Trans. AIEE, 80, Part III, 567-573, 1961-1962.
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Fig. 6.3.2 Cutaway view of an acyclic generator. The solid rotor is made of magnetically
soft steel, the flux density is radial, and current is axial between two liquid metal collector
rings, one of which is shown. (Courtesy of General Electric Company.)

so that electromagnetic quantities of interest will vary with radius only. The electromagnetic
equations for this quasi-static magnetic field system are those of Section 1.1.1a (see
Table 1.2).

We first use the conservation of charge in integral form (1.1.22)

JJ- n da = 0, (a)

to establish that the radial component of current density is related to the terminal current
by

I
h' = 2-rrd")

We next write Ohm's law for a grain of matter at the radius r by writing the rcomponent
of (6.3.5).

J, = a(Er + wcrBo), (c)

where B0 is the magnitude (z-component) of Bo and Er is the radial component of electric
field intensity. A tangential (0) component of flux density is parallel to the material velocity
and does not contribute a v x B term. Thus the neglect of the field generated by current in
the disk is justified.
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We now use (b) in (c) to find Er,:

I
Er - 2 - wBor. (d)

Recognizing that there is no time rate of change of magnetic field in the fixed reference
frame, we can write the terminal voltage as

j Ro I Ro wBo
V= - Edr = -- In + (R,2 - Ri). (e)

Thud 1 2

Use of the terminal relation required by the resistance R yields

VoI . (f)
R + Rint

where V0o = (wBo/2)(Ro2 - Ri 2) is the open circuit (R - oo) voltage of the generator,
and Rint = [ln (R,1Ri)J/27rad is the internal resistance of the generator.

To obtain some idea of the kinds of numbers obtainable with real materials consider a
copper disk with the following parameters and dimensions:

a = 5.9 x 107 mhos/m w = 400 rad/sec
d = 0.005 m Bo = 1 Wb/m2

R, = 0.01 m R o = 0 .1 m

The open-circuit voltage is then
Voc = 2V

and the internal resistance is

Rint = 1.25 x 10
- 6 

n.
The short-circuit current is

Vo
Ise - - 1.6 x 106 A.

Rint

The maximum power that can theoretically be delivered by this generator is

Pmax - VoCsc - 8 x 10
5 W.

4

For steady-state operation, however, the output power would be limited to a much lower
value by allowable 12Rint heating of the rotating disk. These figures indicate, though, that
this device is suitable for supplying large pulses of power.*

We now use (d) and (f) to write the radial component of electric field intensity as

[ Rint V0 ooc- ()
r (R + Rint) In (R/R) r - (g)

In the spirit of the discussion of quasi-static systems in Section B.2.2 we can calculate the
volume charge density necessary to satisfy Gauss's law:

pf = Ve CoE. (h)

* T. J. Crawford, "Kinetic Energy Storage for Resistance Welding," Welding Engineer,
33, 36 (1948).
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Using the equation for the divergence in cylindrical coordinates,* we have

p- = -26owB 0 . (i)

This charge density arises from the second term in (g); the first term is divergenceless. The
finite volume charge density results because the electric field is generated by nonuniform
motion in a uniform magnetic field. There is, however, no net charge on the disk because
an equal amount of charge of opposite sign occurs as a surface charge density at r = Ro
and r = Ri.

As discussed in Section B.2.2 this charge density was derived after the field problem was
solved and its presence has negligible effect on the field solutions. To illustrate, consider the
current density that results from the convection of this charge density by the rotating disk.
The result is a 0-component of current density that has the value

Js = -2e0owBor.

We use the 0-component of Ampere's law in cylindrical coordinates to find the change in B,
caused by this current:

6B,
7= -~oJ1 = 2p~oeowaBor.

Integrating this expression, we find the maximum possible fractional change in B, as

Z- _tRoRPo o =

B 2, C2

where c is the speed of light (Section B.2.1). For any disk made of real material the peripheral
speed (R 0) must be much smaller than the speed of light; thus the change in B, due to
convection current is negligible.

We reconsider the homopolar machine and complete its terminal description as an
electromechanical coupling device in Section 6.4.

6.3.2 Constituent Relations for Electric Field Systems

The differential equations in Section 1.1. lb (see Table 1.2) and the bound-
ary conditions of Section 6.2.2 indicate that fields in quasi-static, electric field
systems are excited by free charge density p,, free surface charge density a,,
and polarization density P. The constituent relations for these source quan-
tities are given for stationary media in Section 1.1.lb. We generalize those
constituent relations appropriate for electric field systems to include the
effects of material motion.

In Section 1.1.1b the conduction process in a stationary medium was
modeled by (1.1.16):

J, = (pf,÷+ + p,_p_)E, (6.3.11)

where py+ and pf_ are the densities of free charge and tp+ and Jp_ are the
mobilities of the free charges defined in Section B.3.3. When the material is
moving, (6.3.11) must be modified according to the transformations of

* [d(eorE,)/dr]/r
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(6.1.56) and (6.1.58). Thus, if the material is moving with velocity v, we must
write (6.3.11) in the form

Jf = (Pf+u+ + pf-•_)E + pv, (6.3.12)

where the net charge density p, is given by

Pf = Pi+ + P,-. (6.3.13)

The first term [(p,+,+ + pf__)E] of (6.3.12) describes the motion of
charge carriers with respect to the material and the second term (pfv) describes
the convection of net charge by the motion of the material.

The transformations of (6.1.54), (6.1.55), and (6.1.59) show that in a
quasi-static electric field system D, E, and P are unaffected by relative motion.
Consequently, (1.1.17) and (1.1.19), which were written for stationary mate-
rial, are still valid when the material is moving with respect to the coordinate
system in which electromagnetic quantities are measured. For convenience
we repeat these two equations here:

P = EoXE, (6.3.14)

D = EE, (6.3.15)

where the dielectric susceptibility X,and permittivity e are related by

E= Eo(1 + X,). (6.3.16)

We conclude this section with an example that involves a particularly
simple form of (6.3.12). Other examples of the use of these constituent
relations are given in Chapter 7.

Example 6.3.2. A simple example in which the constituent relation (6.3.12) is used, is
shown in Fig. 6.3.3. Here a cylindrical beam of charge carriers moves with the velocity V
in the z-direction. We assume that the charge density is uniform throughout the beam and
that the carriers (for example electrons) have zero mobility.

In a primed frame moving to the right at the velocity V the current is zero (6.3.12) and
we have the simple fields associated with a uniform cylinder of charge density Po. Note
that we have assumed pf = pf, as given by (6.1.56). In this moving frame there is no
magnetic field because there is no current J. Because the beam is uniform in the z-direction,

r I Line of integration

Fig. 6.3.3 Charged beam moving at velocity V to the right.

I:
V
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the electric field follows from Gauss's law (1.1.25) integrated over a cylinder of radius r
and unit length in the z-direction:

oEr(2-7r) = {p 2 rr dr. (a)

Hence inside the beam

E = , r < a, (b)
2EO

and outside the beam

E P- r > a. (c)
2• r

To find the fields in the fixed frame is a simple matter, for (6.1.54) requires that E = E'
and (6.1.58) gives the current as

J,= p0 ViZ, r < a. (d)

The magnetic field follows from (6.1.57) and (6.1.54) as H = Vi, x eoE or, by use of
(b) and (c),

H = i , r < a,

(e)
Vpoa2H = i , r > a.

The last result could be found alternatively by using the current density J1 from (d) in the
integral form of Ampfre's law (1.1.20). A line integral of H around the beam at a radius r
gives

2nrHs = f.2nfr dr (f)

or

Ho VPr r < a,
2

He - , r > a.
2r

in agreement with (e).

6.4 DC ROTATING MACHINES

As stated in Section 4.1.6c, the dc machine is the most widely used rotating
machine for control applications, especially when precise and versatile
control of mechanical power or torque is required. Control can be achieved
with high efficiency so that dc motors are used widely in high-power systems
such as traction applications for driving locomotives and subway trains,
rolling mills in steel plants, and ship propulsion. In electrically propelled
ships and in diesel-electric locomotives the prime mover produces mechanical
power and an electrical system is used for control rather than a mechanical

__·__1~__1~_ _1 __·I __1__1
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system of gears. The primary reason for this substitution is the versatility of
the electrical power transmission system from the viewpoint of control.

The use of dc motors for controllable drives requires de generators to
supply the necessary power. Moreover, there are many applications of
electric power in which direct current is necessary; for example, the produc-
tion of aluminum is accomplished by the use of large quantities of direct
current. Direct-current generators driven by alternating-current motors
are used to supply power in many of these cases.

Because of the wide and extensive use of dc machines, we consider some of
the important features of the more common types in use. Our treatment is
introductory and intended to provide an understanding of the essential
physics of de machine operation and to indicate how the terminal behavior
can be analyzed. In spite of our special attention to the topic at this point
the reader should remember that although the de machines we treat illustrate
the basic material introduced in this chapter they are also specific examples
of lumped-parameter, magnetic field-type, electromechanical devices in-
troduced in Chapters 2 and 3. As we complete the analyses, we shall
indicate the relation to the earlier chapters.

In the next two sections we treat two configurations of de machines:
commutator machines discussed briefly in Section 4.1.6c and homopolar
machines, an example of which was introduced in Example 6.3.1.

6.4.1 Commutator Machines

6.4.1a Physical Characteristics

As discussed in Section 4.1.6c, a commutator can be viewed as a mechan-
ically controlled frequency changer that causes rotor-current frequencies to
satisfy automatically the condition for average power conversion (4.1.18)
when rotor and stator electrical sources are at the same frequency (usually
zero). To analyze the terminal behavior of a commutator machine, other
viewpoints are used. (In some cases the techniques of Chapter 3 are employed,
but this kind of treatment makes physical insight difficult.) We use a field
approach to obtain equations of motion and indicate how the connection is
made to the techniques of Chapter 3.*

To develop the equations of motion for a commutator machine from a field
viewpoint we need to specify the geometry of the windings, the commutator,
the brushes, and the magnetic material. To do this we use simplified sche-
matic drawings. To put these representations in perspective a cutaway view

* For some alternative viewpoints on analytical techniques to be used with commutators
see, for example, D. C. White and H. H. Woodson, ElectromechanicalEnergy Conversion,
Wiley, New York, 1959, Chapter 4; A. J. Thaler and M. I. Wilcox, Electric Machines,
Wiley, New York, 1966, Chapters 3 and 4; A. E. Fitzgerald and C. Kingsley, Jr., Electric
Machinery, 2nd ed., McGraw-Hill, New York, 1961, Chapter 3.
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Fig. 6.4.1 Cutaway view of a 2250-hp, 300/600-rpm, 600-V, dc motor. (Courtesy of
General Electric Company.)

of a commutator machine is shown in Fig. 6.4.1 with the principal parts
labeled. When using the simplified schematic drawings, frequent reference
should be made to this practical configuration.

First, consider the schematic end view of a two-pole commutator machine
shown in Fig. 6.4.2. This is a salient-pole structure, as defined and discussed
in Section 4.2, with the salient poles on the stator. A commutator machine
can have any even number of poles (see Sections 4.1.8 and 4.2.4), but we
treat a two-pole machine in the interest of simplicity. The rotor is essentially
cylindrical with conductors placed in axial slots as indicated. The stator
winding is excited directly at its terminals and the rotor conductors are
excited through brushes (usually carbon) that make sliding contact with the
commutator.

To follow the usual convention, we call the stator winding thefield winding
and denote quantities associated with it by the subscriptf; we call the rotor
winding the armaturewinding and denote quantities associated with it by the
subscript a.

Currents in the field windings, with directions indicated by dots and crosses
in Fig. 6.4.2, produce a flux density distribution that is symmetrical about the
field magnetic axis, as indicated in the developed view of the machine in Fig.
6.4.3. Currents in the armature conductors, maintained by the commutator
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Field
magnetic

Fig. 6.4.2 Two-pole, commutator machine.

and brushes, have the directions indicated by the dots and crosses in Fig.
6.4.2, independent of armature (rotor) position or speed. Thus armature
current produces a flux density distribution that is symmetrical about the
armature magnetic axis, as indicated in Fig. 6.4.3.

To indicate qualitatively the shapes of the flux density distributions and to
illustrate how armature conductors are connected to the commutator bars,
a developed view of the machine is shown in Fig. 6.4.3. The shape of the
field flux density distribution is understandable in terms of Ampere's law
(1.1.20). For analytical purposes it is often assumed that fringing at the pole
edges can be neglected because the air gap is small, that slot and teeth effects
are negligible, and that there is no magnetic saturation. Then the flux density
distribution has the square shape shown by dashed lines. As developed
subsequently, the important quantity is the total magnetic flux per pole;
consequently, the idealized curve is a good representation of the actual curve
with respect to total flux (area under the curve).



Field axis Armature axis

t

Fig. 6.4.3 Developed views of two-pole commutator machine showing flux distributions
and armature connections.
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The armature flux density distribution in Fig. 6.4.3 is idealized in two ways:
the effects of slots and teeth are neglected and the armature current is assumed
to be uniformly distributed along the armature surface. This approximation
may seem rather gross with respect to the number and size of slots in Fig.
6.4.3; in practical machines, however, the number of slots is much greater
and the slots are smaller; thus the approximate flux density distribution in
Fig. 6.4.3 is quite accurate.

The developed view at the bottom of Fig. 6.4.3 shows how armature
conductors are connected to commutator bars. A tracing of conducting paths
will show that any one-turn coil has its ends connected to adjacent commu-
tator bars and that there are two parallel conducting paths between brushes,
each containing three coils in series. Two coils are short-circuited by the
brushes. In practical machines with lap windings,* the coils may have one
or more turns, with the coil terminals connected as shown in Fig. 6.4.3.
Also, in practical machines each slot normally contains two coil sides, one
each from two different coils, rather than the one we show for simplicity.

By visualizing what happens to the conductor currents in Fig. 6.4.3 as the
armature conductors and commutator bars slide past the brushes, it will
become clear that the armature current pattern will shift back and forth by
about the distance between two slots. In a practical machine with a large
number of armature conductors and commutator bars, this variation will
be much less, and it is quite reasonable to assume that the current pattern is
fixed at its average position. This switching of current pattern by the commu-
tator can be interpreted as the electrical equivalent of a mechanical
ratchet.

As indicated in Fig. 6.4.3 and noted earlier, two coils have no current
because the brushes short-circuit them. As the armature turns, armature
coils are successively shorted by the brushes. Before a coil is shorted it
carries current in one direction, and after the short is removed the current
direction is reversed. The process of current reversal is called commutation,
and it is complicated by speed voltage and inductive voltages in the shorted
coil and by arcing of the contact between brush and commutator. The
process of commutation is complex and its practical realization imposes a
limitation on the characteristics that can be achieved with commutator
machines.t For the purpose of analyzing the terminal behavior of commutator
machines we need to know only the geometry of the windings and the fact

* An alternative scheme is called a wave winding. Both schemes, lap and wave windings,
essentially yield a continuous armature winding. For a discussion of the two schemes see,
for example, A. E. Knowlton, ed., Standard Handbook for Electrical Engineers, 9th ed.,
McGraw-Hill, New York, 1957, Section 8.25.
f" For a discussion of commutation and a list of good references see Knowlton, op. cit.,
Sections 8.33 to 8.55.

_~
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that the commutator keeps the armature current pattern fixed in space with
respect to the brushes, as illustrated in Figs. 6.4.2 and 6.4.3.

6.4.16b Equations of Motion

To develop the equations of motion for commutator machines we use the
field transformations of Section 6.1.1 and the constituent relations of Section
6.3.1. We consider the effects of field flux density and armature flux density
separately and superimpose the results. Such a process provides adequate
accuracy; when the two flux density distributions in Fig. 6.4.3 are super-
imposed, however, they add in some regions and subtract in others. In the
region in which they add, there may be saturation and resulting distortion
of the flux patterns. When this occurs, the armature flux density distribution
is skewed and there is a net linkage of armature flux with the field winding.
This phenomenon is called armature reaction.* We neglect saturation, and
thus the effects of armature reaction, in our analysis.

Consider first the field winding in Fig. 6.4.2. With reference to the flux
density distributions of Fig. 6.4.3, it is clear that the armature produces no
net flux linkage with the field winding because the axes of symmetry of the
flux density distributions are orthogonal. Thus the field winding links only
its own flux and we can write the equation (see Section 2.1.1)

v = Rfi, + L, !i_, (6.4.1)
dt

where R, = the field winding resistance,
L, = the field winding self-inductance.

Effects of armature slots and teeth are neglected in defining the constant
field inductance L,.

Because the armature conductors are in motion with respect to the reference
frame in which we are defining fields, we must be careful when writing the
voltage equation for the armature circuit. We use Faraday's law in integral
form with afixed contour (see Table 1.2):

- E - dl = B - n da. (6.4.2)

The contour C is fixed so the E is measured in the fixed reference frame.
The contour to be used (shown schematically in Fig. 6.4.4) follows one of the
conducting paths through the armature conductors between the brushes
(see Fig. 6.4.3). The contour is fixed and the conductors are moving; thus
they coincide only instantaneously.

* See, for example, Knowlton, op. cit., Sections 8.27 to 8.32.
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To evaluate (6.4.2) we break the contour integration into two parts:

- E - dl -- E - dl = B . n da. (6.4.3)

The first term on the left is the integral between the terminals external
to the machine and is

-- E dl-= va. (6.4.4)

The second integral on the left is taken through the armature circuit of the
machine. If the armature conductor material has a conductivity r, then (6.3.5)
indicates that we must write

J = ar(E + v x B) (6.4.5)

for the armature conductors in which J is the armature conductor current
density and vis the armature conductor velocity. This expression can be used
for all armature circuit conductors, including those from the terminals to the
brushes, because v = 0 and J = aE, as it should be for a conductor at rest.

Solution of (6.4.5) for E and the use of that result in the second term of
(6.4.3) yields

- E dl = -.. dl + (v x B) dl. (6.4.6)

The first term on the right is just the drop in voltage across the armature
resistance and can be written as

dl = -i R , (6.4.7)

where Ra is the armature circuit resistance. To show this for the armature
conductors between brushes, assume that the
current (i/J2) (see Fig. 6.4.3) is distributed
uniformly over the cross section A, of the
wire. Then the magnitude of J is

ia j= i (6.4.8)
2A,

Q +1,'f IntJ lInhk nf n;ire hbtween

Fig. 6.4.4 Illustration of the brushes as l, and
contour for finding an armature fa ~- ia ial
voltage equation. The contour is - -dl = - a dl = -i

completed on the armature, where Jo 2A w 2A ,o

it follows one of the two con- (6.4.9)
ducting paths joining the brushes
in Fig. 6.4.3. The quantity (1,/2Ao) is just the resistance
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of two wires in parallel, each having length 1,, and A,, and conductivity a.
The second term on the right of (6.4.6) is a speed voltage, which is evaluated

as follows. The velocity of a conductor is

v = iOBR, (6.4.10)

where R = the radius measured from the axis of rotation to the conductor
location,

0 = the angular speed of the armature,
i, = the unit vector in the tangential direction taken as positive in

the counterclockwise direction in Fig. 6.4.2.
If we assume that appreciable flux density occurs only over the axial length I
shown in Fig. 6.4.3 and that this flux density is radial and independent of
axial position,* then

B = ir B,(), (6.4.11)

where i, = the unit vector in the radial direction,
S= an angle measured with respect to the fixed reference frame, as

indicated in Fig. 6.4.2.
Equations 6.4.10 and 6.4.11 are used to write

v x B = -i,,RB,(p), (6.4.12)

where i, is the unit vector in the axial direction and is positive out of the
paper in Fig. 6.4.2. Use of this term in the integral

(v x B) . dl,

with the flux density distributions of Fig. 6.4.3 and the contour defined in
Fig. 6.4.4, shows that there is no net contribution from armature flux density
but there is from field flux density. To evaluate this contribution we can
evaluate B, at the value of yi for each conductor, multiply by the length, and
add up the contributions of each conductor to get the total. In real machines
there are many armature conductors such that it is a good approximation to
use the average flux density due to the field winding

fBrxv) dp
(B,,)av = (6.4.13)

7T

and write
v x B = -i,, OR(Bf)av . (6.4.14)

* This restriction is necessary only for simplicity. The method is general and can include
axial variation of radial flux density and effects of the axial component of B on the radially
directed end turns.
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We then take twice the axial length (21) for the voltage generated in one turn
and the total number of turns N in one path between brushes to write

(v x B) dl = -21N OR(B,.,)a. (6.4.15)

Because (Bf,)av is proportional to field current i,, it is conventional to write
this term as

f(v x B) dl = -GO i,, (6.4.16)

where G is the speed coeficient that depends only on geometry and magnetic
material properties.

To evaluate the final term, the right side of (6.4.3), we recognize that

B -n da = A (6.4.17)

is the flux linking the armature circuit. As indicated earlier, all of this flux
linkage is due to armature current, the system is assumed to be electrically
linear, and the effects of slots and teeth are neglected; thus

Aa = Lai,, (6.4.18)

where L. is the constant armature self-inductance and

d dA L diaB * n da = L diL (6.4.19)
dt ns dt dt

The armature voltage equation is now written by combining (6.4.4),
(6.4.6), (6.4.7), (6.4.16), and (6.4.19) in (6.4.3); thus

di
Va = JaRa + La, + GOi,. (6.4.20)

dt

This is the desired armature circuit equation.
It is clear from this result that the electrical consequence of mechanical

motion is represented by the last term on the right of (6.4.20). This term was
derived in (6.4.10) to (6.4.20) with a fixed contour and Ohm's law for a
moving conductor. It could have been derived with a contour that moves with
the armature conductor. In this case we assume a contour from b to a in
Fig. 6.4.4 that is moving with the armature conductors and write (6.4.3) in
the alternate form

- E - dl - E' - dl = - B n da. (6.4.21)
dt s
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We must remember that the contour C is now moving and thus the surface S
varies with time. In the frame moving with the conductor

J' = oE'

and the transformation of (6.1.36) gives

J' = J.

Thus the second term on the left of (6.4.21) produces only the resistive
voltage drop (6.4.7). The speed voltage (6.4.16) is now generated by the
time-varying surface in the term on the right of (6.4.21). This can be verified
in a straightforward manner and is not done here. The method corresponds
to that of Chapter 3 in which speed voltages were obtained from time rates
of change of fluxes. These alternate ways of computing the terminal voltage
were also illustrated in Example 6.1.2.

To complete the terminal description of the commutator machine we must
evaluate the torque of electric origin. There are several equally valid ways of
doing this. The torque is evaluated here by using the Lorentz force density
for magnetic field systems.

We shall use the force density (1.1.30)

F = J x B, (6.4.22)

with current density in the armature conductors and the radial component
of flux density sketched in Fig. 6.4.3. It should be recognized that the teeth
shield the conductors in the slots so that the conductors experience only a
small fraction of the flux, most of which passes through the teeth. The result
is that most of the torque is produced by magnetic forces on the magnetic
material of the teeth. Nonetheless, we still get the correct answer by assuming
that all the magnetic forces act on the conductors. That it is immaterial
whether the force acts on the conductors or teeth but depends only on the
magnetic fields in the air gap adjacent to the armature can be verified by
using the Maxwell stress tensor to be introduced in Section 8.2.1.*

Making assumptions consistent with those in the derivation of the armature
voltage equation, we assume (for mathematical convenience, not necessity)
that appreciable flux density exists only along the length I of axial conductors
(see Fig. 6.4.3 for definition of 1)and that the flux density is radial and does
not vary with axial position

B = iB,(7 o). (6.4.23)

* The fact that the force acts on the armature teeth and not on the conductors has the
practical advantage that the mechanical forces applied to the conductor insulation are
small and the insulation problem is more easily solved.
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The current density in the region of interest is uniform across the conductor
and axial

J = izJz. (6.4.24)

We use (6.4.23) and (6.4.24) in (6.4.22) to get the force density

F = ioJ, B,.(p). (6.4.25)

For uniform current density the magnitude of the current density in one
armature conductor (see Fig. 6.4.3) is

IJzI (6.4.26)
2A,

where A, is the cross-sectional area of the conductor. By integrating through-
out the volume of one conductor over the active length 1,the total force on
one conductor is

F1= jio (6.4.27)
2

The ± is determined by the relative directions of current and flux density.
For the system of Fig. 6.4.2 we could simply superimpose the field and

armature flux density distributions in Fig. 6.4.3, find the force on each
conductor, add the forces, and multiply by the lever arm to get the torque.
It is more instructive, however, to consider the two flux densities separately.
First, it should be evident from the relative shapes of the armature current
distribution and the armature flux density distribution (see Fig. 6.4.3)
that no net torque results from their interaction. Furthermore, the relative
directions of field flux density and armature current are such that each
conductor produces a torque in the +0-direction. Thus, with a lever arm
(conductor radial position) of R, the torque from one conductor in the +0-
direction is

i.lR B,,(V)
T, =- (6.4.28)2

We could add the contributions from the 12 active conductors (six coils)
in Fig. 6.4.2; there are, however, many conductors, and the practice is to
use the average field flux density defined in (6.4.13) and multiply by the num-
ber of active conductors, which is four times the number N ofcoils introduced
in (6.4.15) (remember that there are two parallel paths between the brushes);
thus the total torque is

Te = 2NI R(B,,)avia. (6.4.29)

Note that the coefficient of i, in this expression is the same as the coefficient
of 0 in (6.4.15), and we use the speed coefficient G defined by (6.4.15) and
(6.4.16) to write - dh A i\

Te Gi (64'30A )
= 'Pa- \. r.J
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Fig. 6.4.5 Equivalent circuit of the commutator machine in Fig. 6.4.2.

In addition to the Maxwell stress tensor method mentioned earlier, this
same torque can be derived by the energy method of Chapter 3, although
with the commutator, care must be taken when applying this technique.

We have now completed the description of the electromechanical coupling
properties of the commutator machine of Fig. 6.4.2. We complete the terminal
description in the nomenclature introduced in Chapters 2 and 3 by drawing
the equivalent circuit in Fig. 6.4.5. All losses are taken outside the coupling
network which contains only magnetic field energy storage. On the mechan-
ical side the rotor (armature) moment of inertia is J, and both viscous (B,)
and coulomb (To) damping are included. A commutator machine normally
has significant coulomb damping from the brushes sliding on the commutator.
The sources Tm, va, and v, are general and can be independent or dependent
on some variable.

6.4.1c Machine Properties

We shall now study some properties of the commutator machine by using
the equivalent circuit of Fig. 6.4.5. The instantaneous power converted to
mechanical form by the coupling network is

p, = T-O = Giia6 , (6.4.31)

where (6.4.30) has been used for torque To. The instantaneous power ab-
sorbed from the armature circuit by the speed voltage GOi, is

p, = GOifia, (6.4.32)

which is equal to the mechanical power output. This leads to the following
immediate conclusions:
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1. Power conversion between electrical and mechanical form in a commu-
tator machine occurs instantaneously between the mechanical system and the
speed voltage source in the armature circuit.

2. The power conversion is proportional to field current, but there is no
power conversion between the field circuit and the mechanical system.

Next, assume that the rotor is to be driven by a constant-speed source

0 = Co,, (6.4.33)

open circuit the armature (in = 0), and apply a battery to the field circuit
terminals

v1 = V,. (6.4.34)

The open-circuit armature voltage varies with field voltage, as can be seen
by considering steady-state conditions and (6.4.1) to find

ii = L (6.4.35)
Rf

From (6.4.20) with ia = 0 we find

va =- RV. (6.4.36)
R,

The armature voltage is proportional to the field voltage. This has the
makings of a linear amplifier.

Now with the constraints of (6.4.33) and (6.4.34) applied, put a load
resistance RL across the armature terminals; the armature terminal voltage
in the steady-state is

va= GR (') .V (6.4.37)
\ R, + Ra R,

The load voltage is linear with field voltage and all the load power comes
from the mechanical source. This illustrates the basic mode of operation of a
de generator, but it also indicates that the machine can be operated as an
electromechanical amplifier. Direct-current machines are used as power
amplifiers in many control applications. The power gain in a single machine
is usually in the range of 20 to 30 and the bandwidth over which the amplifica-
tion factor is constant is limited by field inductance to a few Hertz. Nonethe-
less, for control applications in which devices and power requirements are
large, the required bandwidth is often small. It is difficult to think of a more
economical way to make a 100,000-W, linear dc amplifier.

Commutator machines are used widely as electromechanical amplifiers,
especially when considerable power is to be handled in control applications.
Some amplifiers involve special constraints on a machine like that in Fig.
6.4.2 (Rototrol and Regulex); others have special configurations that involve
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Fig. 6.4.6 Constraints for study of energy conversion properties in a dc machine.

a second set of brushes placed 90' from the original set to form a second
armature circuit and a second field circuit placed 900 from the original field
circuit (metadyne and amplidyne). All of these amplifiers are analyzed with
the same basic techniques we used earlier.*

To learn some of the characteristics of the commutator machine as a dc
energy converter we consider a steady-state problem with the constraints
indicated in Fig. 6.4.6. The rotor position is constrained by a constant speed
source

the field is constrained by a direct-current source

i,= I,;

and the armature terminals are constrained by a constant-voltage source

v. = Vr.

We have left out armature inductance because we are treating the steady state.
The use of these constraints with the armature circuit equation (6.4.20)

yields for the armature current

ia = V.- Gcowl (6.4.38)
Ra

* For a good discussion of rotating amplifiers in general and analyses of the specific
configurations named see G. J. Thaler and M. L. Wilcox, Electric Machines, Wiley, New
York, 1966, pp. 135-149.
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The electric power fed into the armature terminals is

p-= -J=- G /"hj (6.4.39)

The torque of electric origin (6.4.30) is

T = GIf( a Gw-mI (6.4.40)

and the mechanical power out of the coupling network (6.4.31) is

Pm = Teom = GIf.,w(1 - GoWI (6.4.41)

The quantities given by (6.4.38) to (6.4.41) are sketched as functions of W,
for constant Va and If in Fig. 6.4.7. As indicated in this figure, there are three
regions of operation as defined by energy flow. Generator operation has
mechanical power input (Pm < 0) and armature power output (Pa < 0)
and occurs at values of speed at which the speed voltage (Gwm,,) is greater
than the armature voltage (Va). The speed voltage then makes current flow
to charge the battery on the armature terminals. Motor operation has arma-
ture power input (pa > 0) and mechanical power output (Pm > 0) and
occurs in a range of speed in which the armature terminal voltage V, is
greater than the speed voltage Gwal, and can feed power into the speed
voltage. Brake operation occurs when power is put into the machine both
from the armature terminals (Pa > 0) and from the mechanical terminals
(p, < 0) and all of this power is dissipated in the armature resistance Ra.
To see this refer to Fig. 6.4.6 and recognize that with w, < 0 the speed
voltage Go,,I and armature battery Va have aiding polarities and both
feed power to Ra.

Figures 6.4.6 and 6.4.7 give the essential features of the operation of a de
machine with separate excitation; that is, the field winding is excited inde-
pendently from a source separate from the armature excitation. The char-
acteristics of a dc generator with separate excitation can be derived quite
easily by using an equivalent circuit like that of Fig. 6.4.6. The transient
performance of a separately excited de generator is limited by field inductance,
armature inductance, load inductance, or capacitance, and prime mover
characteristics. The study of the characteristics is straightforward and is
left to the problems at the end of the chapter.

The principal characteristics of a separately excited dc motor are shown in
Fig. 6.4.8 in the sketch of torque-speed curves with armature voltage as
parameter and field current constant. For practical machines the relatively
small armature resistance leads to the steep slope of the curves. Thus at
constant armature voltage there is little variation of speed with torque and
the speed can be controlled quite closely by controlling the armature voltage.
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Fig. 6.4.7 Terminal characteristics of commutator machine with constant armature
voltage and constant field current: (a) armature current; (b) armature power input; (c)
torque of electric origin; (d) mechanical power out of coupling network.

This is the most common mode of operation of a dc motor when speed
control is required. More precise speed regulation is obtained by using a
feedback control system to sense the speed error and correct the armature
voltage accordingly. When a dc generator is used to supply motor armature
power in such a system it is called a Ward-Leonard system.*
* See, for example, Thaler and Wilcox, op. cit., p. 291.

--------3II

/j

Crrrlm



e =- G I2
Ra

Fig. 6.4.8 Torque speed curves of separately excited dc motor.
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Fig. 6.4.9 Methods of self-exciting a dc motor: (a) shunt excitation; (b) series excitation.
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There are two other fundamental ways of providing field excitation in dc
motors; shunt excitation, illustrated schematically in Fig. 6.4.9a, and series
excitation, illustrated in Fig. 6.4.9b. Considering shunt excitation with a
steady state de problem, we neglect the inductance and write

v, = ifR, (6.4.42)

v, = iaR, + GOi,. (6.4.43)

The shunt terminal constraints of Fig. 6.4.9a are

)t = Va = )i

it = ia+ if.

Using these constraints with (6.4.42) and (6.4.43) yields for the armature
current and terminal current

i =( G V (6.4.44)

it = + R a (6.4.45)
(Rf R, RRfia -

The torque of electric origin is (6.4.30)

T = G 1 O 1Ra. (6.4.46)

The torque-speed and terminal-current-speed curves for shunt excitation
are sketched in Fig. 6.4.10. Because of the steep slope of the torque-speed
curve, speed control is most effectively and efficiently achieved by the control
of field resistance R, because it determines the intercept with the speed axis.

Now consider a steady-state dc problem with series excitation as in Fig.
6.4.9b; (6.4.42) and (6.4.43) still hold but now the series connection imposes
the constraints

Vt = Va + VI,

it= i.=iI.

Using these constraints with (6.4.42) and (6.4.43), we get for the terminal
current

it = Vt (6.4.47)
Rf + R, + GO'

and the torque of electric origin is (6.4.30)

Te = Gi Gv (6.4.48)
(R, + Ra + GO) 6

6.4.1
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vt = constant

vt/RRa

Fig. 6.4.10 Torque and terminal current as functions of speed in a shunt-excited dc motor
with constant terminal voltage.

The torque and terminal current are sketched as functions of speed for
constant terminal voltage in Fig. 6.4.11. Series-excited motors are used for
traction drives and other applications in which high starting torque is
required. The starting current is usually limited by variable series resistance,
as is the running current.

A commutator machine like that of Fig. 6.4.2 may have more than one
field winding on the same field structure. Oftentimes two field windings are
used, one for shunt excitation and one for series excitation, in which case
the machine is called a compoundmotor. It should be clear that combinations
of the characteristics of Fig. 6.4.10 and 6.4.11 in varying amounts can lead
to a wide variety of motor characteristics.*

We consider one final example of the possible steady-state characteristics
of the commutator machine in Fig. 6.4.2, and that is as a shunt, self-excited,
dc generator. By self-excited, we mean that only mechanical input is required
to produce an electrical output. The field current is generated by the armature.
The successful operation of this machine depends on saturation in the
magnetic material, which shows up in the speed coefficient G, thus reducing

* See, for example, Fitzgerald and Kingsley, op. cit., pp. 141-142.
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Fig. 6.4.11 Torque and terminal current as functions of speed for series-excited dc motor
with constant terminal voltage.

the value of G as the excitation current i,, hence the speed voltage increase.
This saturation is usually represented by a plot of armature open-circuit volt-
age voc in Fig. 6.4.12 (the speed voltage Gw~i,) as a function of field current
with speed held fixed. Such a curve is sketched in Fig. 6.4.12a. Now connect
the field winding in parallel with the armature terminals with no load con-
nected, as shown in Fig. 6.4.12b; the field current is determined in the steady
state by the field resistance line in Fig. 6.4.12a. The steady-state operating
point at which the circuit equations are satisfied in the steady state is shown
in Fig. 6.4.12a. If the field current is below the steady-state value, the excess
of generated voltage over the iR drop goes into increasing the current as
illustrated. Thus, if a small amount of voltage is produced (usually by residual
field flux), the terminal voltage will build up automatically to the operating
point, the rate of buildup being determined by the relative shapes of the
two curves in Fig. 6.4.12a and by the machine inductances. The addition of a
load causes a little additional voltage drop in Ra but does not change the
essential features of the argument. A moderate range of voltage control is
achieved by varying the field resistance R,, the slope of the field resistance
line, hence the intersection of the two curves in Fig. 6.4.12a.

6.4.1

--
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6= wm = constant

Fig. 6.4.12 Illustrating shunt self-excitation in a dc generator: (a) voltage versus field
current curves; (b) shunt-connected generator with no load.

Generators can be series-excited and can use both series and shunt excita-
tion. The techniques of analysis are similar to those used for shunt excitation
and a great variety of terminal characteristics can be obtained.*

All of our examples have been based on dc excitation. Commutator
machines are also used with alternating current. The techniques of analysis
are essentially the same, but the inductances play a vital role in determining
steady-state characteristics. Some examples of ac commutator machines are
studied in the problems at the end of this chapter.

6.4.2 Homopolar Machines

A physically different type of dc rotating device is the homopolar machine,
but, as we shall see, it has terminal behavior much like that of a commutator
* Fitzgerald and Kingsley, op. cit., pp. 139-141.
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Fig. 6.4.13 Configuration for analysis of homopolar machine.

machine. One version of a homopolar machine is introduced in Example 6.3.1
to illustrate the application of Ohm's law for a moving conductor. A cutaway
view of a practical homopolar generator appears in Fig. 6.3.2.

In Example 6.3.1 a limited analysis is made of the armature characteristics
under steady-state conditions. In this section that analysis is generalized to
include transients in the armature circuit and extended to find the terminal
equations for the field circuit and the mechanical system.

For the analysis we use the configuration of Fig. 6.4.13 which is represent-
ative of a homopolar machine that would use a superconducting field coil.
The system consists of a disk of the dimensions shown and connected to a
shaft that is rotating with angular speed ov. A coaxial fixed conductor makes
sliding electrical contact (conventionally through a liquid metal) with the
outside surface of the disk. Another sliding contact is made with the shaft
as shown and these two connections to the disk form the armature terminals.
The whole assembly is surrounded by a coaxial solenoid that produces an
axial flux density at the disk. The terminals of the solenoid are the field
circuit terminals. The reason for the carefully specified cylindrical symmetry is
mathematical simplicity and is not necessary for the analytical techniques to

6.4.2
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be correct. In many practical cases, however, symmetry is desirable to cut
down on harmful electrical and electromechanical effects like circulating
currents, thrust on bearings, and forces on the solenoid.

Current to and from the disk in the shaft and in the coaxial conductor is
axial and has cylindrical symmetry. (We assume that the armature terminals
are far enough removed from the disk and solenoid that the end effects can
be ignored.) Current in the disk is radial and distributed uniformly at any
radius. Consequently, the flux density produced by armature current is
tangential and none of it will link the field solenoid. Therefore, we can
write the field circuit equation immediately as

vL = Rif + L, !, (6.4.49)
dt

where R, = field circuit resistance,
L, = field circuit inductance.

This is exactly the same form as (6.4.1) for the commutator machine.
The electromagnetic behavior of the disk was analyzed for steady-state

conditions in Example 6.3.1. When we assume that any transients occur
slowly enough not to disturb appreciably the uniformity of current density
in the disk, (we pursue this point in Chapter 7), the results of Example 6.3.1
are still valid, provided we add a self-inductance term. (There is no net field-
produced flux linkage with the armature.) Thus the armature voltage equation
is

va = Rai, + L a _a + Gwi,, (6.4.50)
dt

where Ra is the armature resistance found in Example 6.3.1 (where it is
called Rint)

Ra In (R;/R). (6.4.51)
27rod

La is the armature self-inductance that can be calculated from the geometry
and G is a speed coefficient found from equating the open-circuit voltage in
Example 6.3.1 to the speed voltage.

Gwi, = ! (Ro2 - R1
2). (6.4.52)

As for the commutator machine, this speed coefficient G depends only on
geometry and material properties.

We obtain an approximate value for G by assuming that the solenoid has
N total turns and is axially long with small radial buildup. With an axial

~
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length 1, the value of flux density near the center is (from Ampere's law)

B, = iBo = i. oNi, (6.4.53)
1

The use of this result in (6.4.52) and the solution for G yields

G = I N (R.2 - R1
2). (6.4.54)

21

Equation 6.4.50, which is the armature voltage equation for the homopolar
machine, is the same form as the armature equation for the commutator
machine (6.4.20). We could have derived this equation in a manner analogous
to that used for the commutator machine; for example, if we had chosen a
contour C, illustrated schematically in Fig. 6.4.14, then, with the contour
fixed in the laboratory frame, we could write Faraday's law as

S E dl - E d = B n da. (6.4.55)

The first term on the left is the terminal voltage, the second term on the left
contains the resistive voltage drop and the speed voltage, and that on the right
is the self-inductance term. To complete such an analysis we must simply
follow the steps used in going from (6.4.3) to (6.4.20) for the commutator
machine.

Alternatively, the contour C can be fixed to the disk in Fig. 6.4.14, and
Faraday's law is written as

-.J JE.d- E'.JdlS B. n da. (6.4.56)

In this case the first term is still the terminal voltage, but now the second term
on the left contains only the resistance voltage drop, and because of the time-
varying surface S the term on the right includes both the speed voltage and
voltage of self-inductance.

Fig. 6.4.14 Contour of integration for Faraday's law.
Fig. 6.4.14 Contour of integration for Faraday's law.
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6.4.2



Fields and Moving Media

To complete the description of the homopolar machine, the torque of
electric origin must be obtained. For this we use the force density of electric
origin for magnetic field systems (1.1.30).

F = J x B. (6.4.57)

Using the unit vectors for a cylindrical coordinate system shown in Fig.
6.4.13, the current density in the disk at a radius r is

J = iJ, = - i2 (6.4.58)
27rrd

[See (b) of Example 6.3.1 and note that the assumed positive direction of
armature current has been reversed.] The only flux density that interacts with
this current density to produce a torque about the axis of rotation is the
field flux density given by (6.4.53). The use of these two quantities in (6.4.57)
yields

F = iZoON i, a (6.4.59)
27rldr

The force is tangential; thus we multiply by the lever arm r and integrate
throughout the volume of the disk to find the torque T e in the direction of
positive rotation to

TV =_ o 'oNifi r dr dO. (6.4.60)

Evaluation of the integral yields

Te =i! oN (Ro2 - RI2)ijai = Gi1if, (6.4.61)
21

where the speed coefficient was defined in (6.4.54).
The results of (6.4.61) can be derived also by the energy methods of

Chapter 3, provided great care is exercised in defining the moving circuit.
It is much more reasonable and straightforward to evaluate the torque in the
manner we did.

We now use the results of (6.4.49), (6.4.50), and (6.4.61) to redraw the
equivalent circuit of Fig. 6.4.5. We have included the usual mechanical
elements, and it would be well to remark that with liquid-metal brushes there
is little coulomb friction (To) in a homopolar machine.

The equivalent circuit of Fig. 6.4.5 was originally drawn for the commu-
tator machine discussed in Section 6.4.1. This emphasizes the similarity of
commutator and homopolar machines. All of the discussion of the properties
of commutator machines holds equally well for homopolar machines, with
the qualification that relative parameter values in the two types of machine
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are different; for example, the homopolar machine has essentially a one-turn
armature and is always a low-voltage, high-current device. Thus matching a
wire-wound coil to this low impedance is difficult and few homopolar ma-
chines can be self-excited, either with series field windings or with shunt field
windings. Consequently, most homopolar machines have separately excited
field windings.

Because of the similarity between homopolar and commutator machine
characteristics we terminate the discussion here and treat homopolar ma-
chines further in the problems at the end of this chapter.

6.5 DISCUSSION

In this chapter we have made the necessary generalizations of electro-
magnetic theory that are needed for analyzing quasistatic systems with
materials in relative motion. This has involved transformations for source
and field quantities between inertial reference frames, boundary conditions
for moving boundaries, and constituent relations for moving materials. In
addition to some simple examples, we have made an extensive analysis of dc
rotating machines because they are devices that are particularly amenable to
analysis by the generalized field theory.

Having completed the generalization of field theory with illustrative
examples of lumped-parameter systems, we are now prepared to proceed to
continuum electromechanical problems. In Chapter 7 we consider systems
with specified mechanical motion and in which electromagnetic phenomena
must be described with a continuum viewpoint.

PROBLEMS

6.1. Two frames of reference have a relative angular velocity f, as shown in Fig. 6P.1.
In the fixed frame a point in space is designated by the cylindrical coordinates (r, 0, z).
In the rotating frame the same point is designated by (r', 0', z'). Assume that t = t'.

X2

X1

Fig. 6P.1
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