1. What is the derivative of $\frac{x^{10}}{10!}$?
2. How to see that $\frac{x^{n}}{n!}$ gets small as $n \rightarrow \infty$?

Start with $\frac{x}{1}$ and $\frac{x^{2}}{2}$, possibly big. But we multiply by $\frac{x}{3}, \frac{x}{4}, \cdots$ which gets small.
3. Why is $\frac{1}{e^{x}}$ the same as e^{-x} ?
4. Why is $e^{-1}=1-1+\frac{1}{2}-\frac{1}{6}+\cdots$ between $\frac{1}{3}$ and $\frac{1}{2}$? Then $2<e<3$.
5. Can you solve $\frac{d y}{d x}=y$ starting from $y=3$ at $x=0$?

Why is $y=3 e^{x}$ the right answer?
6. Can you solve $\frac{d y}{d x}=5 y$ starting from $y=1$ at $x=0$?

Why is $y=e^{5 x}$ the right answer?
7. Why does $\frac{e^{\Delta x}-1}{\Delta x}$ approach 1 as Δx gets smaller?

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Highlights of Calculus
Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

