Practice Questions

1. Which x^{*} gives the minimum of $y(x)=x^{2}+2 x$? Solve $\frac{d y}{d x}=0$.
2. Find $\frac{d^{2} y}{d x^{2}}$ for $y(x)=x^{2}+2 x$.

This is >0 so parabola bends up.
3. Find the maximum height of $y(x)=2+6 x-x^{2}$. Solve $\frac{d y}{d x}=0$.
4. Find $\frac{d^{2} y}{d x^{2}}$ to show that this parabola bends down.
5. For $y(x)=x^{4}-2 x^{2}$ show that $\frac{d y}{d x}=0$ at $x=-1,0,1$.

Find $y(-1), y(0), y(-1)$.
6. Now $\frac{d y}{d x}=4 x^{3}-4 x$. What is the second derivative $\frac{d^{2} y}{d x^{2}}$?
7. At a minimum point explain why $\frac{d y}{d x}=0$ and $\frac{d^{2} y}{d x^{2}}>0$.
8. Bending down $\left(\frac{d^{2} y}{d x^{2}}<0\right)$ changes to bending up
$\left(\frac{d^{2} y}{d x^{2}}>0\right)$ at a point of ___ At this point $\frac{d^{2} y}{d x^{2}}=0$
Does $y=x^{2}$ have such a point? Does $y=\sin x$ have such a point?
9. Suppose $x+X=12$. What is the maximum of x times X ?

This question asks for the maximum of $y=x(12-x)=12 x-x^{2}$.
Find where the slope $\frac{d y}{d x}=12-2 x$ is zero. What is x times X ?

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Highlights of Calculus
Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

