Practice Questions

1. What functions $y(t)$ have the constant derivative $s(t)=7$?
2. What is the area from 0 to t under the graph of $s(t)=7$?
3. From $t=0$ to 2 , find the integral $\int_{0}^{2} 7 d t=$ \qquad
4. What function $y(t)$ has the derivative $s(t)=7+6 t$?
5. From $t=0$ to 2 , find area $=\operatorname{integral} \int_{0}^{2}(7+6 t) d t$.
6. At this instant $t=2$, what is $\frac{d(\text { area })}{d t}$?
7. From 0 to t, the area under the curve $s=e^{t}$ IS NOT $y=e^{t}$.

If t is small, the area must be small. But $t=0$ has $y=e^{0}=1$.
8. From 0 to t, the correct area under $s=e^{t}$ is $y=e^{t}-1$.

The slope $\frac{d y}{d t}$ is and now $y(0)=$ \qquad
9. Notice y_{0} in $\left(y_{1}-y_{0}\right)+\left(y_{2}-y_{1}\right)+\left(y_{3}-y_{2}\right)=$ \qquad -.
The sum of $\Delta y=\frac{\Delta y}{\Delta t} \Delta t$ becomes the integral of $\frac{d y}{d t} d t$
The area under $s(t)$ from 0 to t becomes $y(t)-y(0)$.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Highlights of Calculus
Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

