Power Series and Euler's Formula

Power Series and Euler's Formula

At x = 0, the *n*th derivative of x^n is the number n! Other derivatives are 0. Multiply the *n*th derivatives of f(x) by $x^n/n!$ to match function with series TAYLOR SERIES $f(x) = f(0) + f'(0)\frac{x}{1} + f''(0)\frac{x^2}{2} + \dots + f^{(n)}(0)\frac{x^n}{n!} + \dots$ EXAMPLE 1 $f(x) = e^x$ All derivatives = 1 at x = 0 Match with $x^n/n!$ Taylor Series Exponential Series $e^x = 1 + 1\frac{x}{1} + 1\frac{x^2}{2} + \dots + 1\frac{x^n}{n!} + \dots$ EXAMPLE 2 $f = \sin x$ $f' = \cos x$ $f'' = -\sin x$ $f''' = -\cos x$ At x = 0 this is 0 = 1 0 = -1 0 = 1 0 = -1 REPEAT $\sin x = 1 \cdot \frac{x}{1} - 1\frac{x^3}{3!} + 1\frac{x^5}{5!} - \dots$ ODD POWERS $\sin(-x) = -\sin x$ EXAMPLE 3 $f = \cos x$ produces 1 = 0 - 1 = 0 1 = 0 - 1 = 0 REPEAT $\cos x = 1 - 1\frac{x^2}{2!} + 1\frac{x^4}{4!} - \dots$ EVEN POWERS $\frac{d}{dx}(\cos x) = -\sin x$

Imaginary
$$i^2 = -1$$
 and then $i^3 = -i$ Find the exponential e^{ix}
 $e^{ix} = 1 + ix + \frac{1}{2!}(ix)^2 + \frac{1}{3!}(ix)^3 + \cdots$ Those are
 $= \left(1 - \frac{x^2}{2!} + \cdots\right) + i\left(x - \frac{x^3}{3!} + \cdots\right)$ cos $x + i \sin x$
EULER'S GREAT FORMULA $e^{ix} = \cos x + i \sin x$
 $i \sin \theta$
 $e^{i\pi}$ $e^{i\theta}$ $e^{i\theta} = \cos \theta + i \sin \theta$
 $e^{i\theta} + e^{-i\theta} = 2\cos \theta$
 $e^{i\pi} = -1$ combines 4 great numbers
Two more examples of Power Series (Taylor Series for $f(x)$)
 $f(x) = \frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$ "Geometric series"
 $f(x) = -\ln(1-x) = \frac{x}{1} + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots$ "Integral of geometric series"

Resource: Highlights of Calculus Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.