Linear Approximation and Newton's Method

Start at $x=a$ with known $f(a)=$ height and $f^{\prime}(a)=$ slope
KEY IDEA $\boldsymbol{f}^{\prime}(\boldsymbol{a}) \approx \frac{\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{a})}{\boldsymbol{x}-\boldsymbol{a}}$ when x is near a

Tangent line has slope $f^{\prime}(a)$
Solve for $f(x)$
$f(x) \approx f(a)+(x-a) f^{\prime}(a)$
\approx means "approximately"
curve \approx line near $x=a$

Examples of linear approximation to $f(x)$

1. $f(x)=e^{x} \quad f(0)=e^{0}=1$ and $f^{\prime}(0)=e^{0}=1$ are known at $a=0$

Follow the tangent line $e^{x} \approx 1+(x-0) 1=1+\boldsymbol{x}$
$1+x$ is the linear part of the series for e^{x}
2. $f(x)=x^{10}$ and $f^{\prime}(x)=10 x^{9} \quad f(1)=1$ and $f^{\prime}(1)=10$ known at $a=1$

Follow the tangent line $x^{10} \approx \mathbf{1 + (x - 1) 1 0}$ near $x=1$
Take $x=1.1 \quad(1.1)^{10}$ is approximately $1+1=2$

Newton's Method (looking for x to nearly solve $f(x)=0$)
Go back to $f^{\prime}(a) \approx \frac{f(x)-f(a)}{x-a}$
$f(a)$ and $f^{\prime}(a)$ are again known

Solve for x when $f(x)=0$
$x-a \approx-\frac{f(a)}{f^{\prime}(a)} \quad$ Newton x
Line crossing near curve crossing

Examples of Newton's Method Solve $f(x)=x^{2}-1.2=0$

1. $a=1$ gives $f(a)=1-1.2=-.2$ and $f^{\prime}(a)=2 a=\mathbf{2}$

Tangent line hits 0 at $x-1=-\frac{(-.2)}{2} \quad$ Newton's x will be 1.1
2. For a better x, Newton starts again from that point $a=1.1$

Now $\quad f(a)=1.1^{2}-1.2=.01 \quad$ and $\quad f^{\prime}(a)=2 a=\mathbf{2} .2$
The new tangent line has $x-1.1=-\frac{.01}{2.2}$ For this x, x^{2} is very close to 1.2

Practice Questions

1. The graph of $y=f(a)+(x-a) f^{\prime}(a)$ is a straight \qquad
At $x=a$ the height is $y=$ \qquad
At $x=a$ the slope is $d y / d x=$ \qquad
This graph is t \qquad t to the graph of $f(x)$ at $x=a$
For $f(x)=x^{2}$ at $a=3$ this linear approximation is $y=$
2. $y=f(a)+(x-a) f^{\prime}(a)$ has $y=0$ when $x-a=$ \qquad
Instead of the curve $f(x)$ crossing 0 , Newton has tangent line y crossing 0
$f(x)=x^{3}-8.12$ at $a=2$ has $f(a)=$ \qquad and $f^{\prime}(a)=3 a^{2}=$ \qquad
Newton's method gives $x-2=-\frac{f(a)}{f^{\prime}(a)}=$ \qquad
This Newton $x=2.01$ nearly has $x^{3}=8.12$. It actually has $(2.01)^{3}=$

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Highlights of Calculus
Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

