Growth Rates and Log Graphs

In order of fast growth as x gets large

 $\log x$

 x, x^{2}, x^{3}

 $2^{x}, e^{x}, 10^{x}$

 $x!, x^x$

logarithmic

polynomial exponential

factorial

Choose $x = 1000 = 10^3$ so that $\log x = 3$ OK to use $x! \approx \frac{x^x}{e^x}$

 $\log 1000 = 3 \quad 10^3, 10^6, 10^9 \qquad 10^{300}, 10^{434}, 10^{1000} \quad 10^{2566}, 10^{3000}$

Why is $1000^{1000} = 10^{3000}$? Logarithms are best for big numbers

Logarithms are exponents! $\log 10^9 = 9$ $\log \log x$ is VERY slow

Logarithms 3,6,9

300, 434, 1000

2566,3000

Polynomial growth « Exponential growth « Factorial growth

Decay to zero for NEGATIVE powers and exponents

 $\frac{1}{x^2} = x^{-2}$ decays much more slowly than the exponential $\frac{1}{e^x} = e^{-x}$

Logarithmic scale shows x = 1, 10, 100 equally spaced. NO ZERO!

Question If x = 1, 2, 4, 8 are plotted, what would you see?

THEY ARE EQUALLY SPACED TOO!

log-log graphs (log scale up and also across)

If $y = Ax^n$, how to see A and n on the graph?

Plot $\log y$ versus $\log x$ to get a straight line

 $\log y = \log A + n \log x$ Slope on a log-log graph is the exponent n

For $y = Ab^x$ use **semilog** (x versus log y is now a line) $\log y = \log A + x \log b$

How quickly does $\frac{\Delta f}{\Delta x}$ approach $\frac{df}{dx}$ as $\Delta x \to 0$? New type of question

The error $E = \frac{\Delta f}{\Delta x} - \frac{df}{dx}$ will be $E \approx A(\Delta x)^n$ What is n?

Usual one-sided $\frac{\Delta f}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$ only has n = 1

Centered difference $\frac{f(x+\Delta x)-f(x-\Delta x)}{2\Delta x}$ has n=2

Centered is much better than one-sided $E \approx (\Delta x)^2 \text{ vs } E \approx \Delta x$

IDEA FOR $f(x) = e^x$ One-sided E vs centered E PROJECT at x = 0 Graph $\log E$ vs $\log \Delta x$ Should see slope 1 or 2

Practice Questions

- 1. Does x^{100} grow faster or slower than e^x as x gets large?
- 2. Does $100 \ln x$ grow faster or slower than x as x gets large?
- 3. Put these in increasing order for large n:

$$\frac{1}{n}, \quad n \log n, \quad n^{1.1}, \quad \frac{10^n}{n!}$$

4. Put these in increasing order for large *x*:

$$2^{-x}$$
, e^{-x} , $\frac{1}{x^2}$, $\frac{1}{x^{10}}$

5. Describe the log-log graph of $y = 10x^5$ (graph log y vs log x)

Why don't we see y = 0 at x = 0 on this graph?

What is the slope of the straight line on the log-log graph?

The line crosses the vertical axis when $x = \underline{\hspace{1cm}}$ and $y = \underline{\hspace{1cm}}$

Then $\log x = 0$ and $\log y =$

The line crosses the horizontal axis when $x = \underline{\hspace{1cm}}$ and y = 1

Then $\log x = \underline{\hspace{1cm}}$ and $\log y = 0$

- 6. Draw the semilog graph (a line) of $y = 10e^x$ (graph log y versus x)
- 7. That line cross the x = 0 axis at which $\log y$? What is the slope?

MIT OpenCourseWare http://ocw.mit.edu

Resource: Highlights of Calculus Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.