Growth Rates and Log Graphs

In order of fast growth as x gets large
$\log x$
logarithmic

$$
x, x^{2}, x^{3}
$$

$2^{x}, e^{x}, 10^{x}$
$x!, x^{x}$
polynomial

Choose $x=1000=10^{3}$ so that $\log x=3$ OK to use $x!\approx \frac{x^{x}}{e^{x}}$
$\log 1000=3 \quad 10^{3}, 10^{6}, 10^{9} \quad 10^{300}, 10^{434}, 10^{1000} \quad 10^{2566}, 10^{3000}$
Why is $1000^{1000}=10^{3000} ? \quad$ Logarithms are best for big numbers
Logarithms are exponents! $\log 10^{9}=9 \quad \log \log x$ is VERY slow
Logarithms 3,6,9 300,434,1000 2566,3000
Polynomial growth < Exponential growth < Factorial growth
Decay to zero for NEGATIVE powers and exponents
$\frac{1}{x^{2}}=x^{-2}$ decays much more slowly than the exponential $\frac{1}{e^{x}}=e^{-x}$

Logarithmic scale shows $x=1,10,100$ equally spaced. NO ZERO!

-3	-2	-1	0	1	2	3	$\log x$
$1 / 1000$	$1 / 100$	$1 / 10$	1	10	100	1000	x
	$\log \sqrt{10}=\frac{1}{2}$						

Question If $x=1,2,4,8$ are plotted, what would you see?
Answer THEY ARE EQUALLY SPACED TOO!
log-log graphs (log scale up and also across)
If $y=A x^{n}$, how to see A and n on the graph ?
Plot $\log y$ versus $\log x$ to get a straight line
$\log y=\log A+n \log x \quad$ Slope on a $\log -\log$ graph is the exponent n

For $y=A b^{x}$ use semilog (x versus $\log y$ is now a line) $\log y=\log A+x \log b$

New type of question How quickly does $\frac{\Delta f}{\Delta x}$ approach $\frac{d f}{d x}$ as $\Delta x \rightarrow 0$?
The error $E=\frac{\Delta f}{\Delta x}-\frac{d f}{d x}$ will be $E \approx A(\Delta x)^{n} \quad$ What is n ?
Usual one-sided $\frac{\Delta f}{\Delta x}=\frac{f(x+\Delta x)-f(x)}{\Delta x}$ only has $n=1$
Centered difference $\frac{f(x+\Delta x)-f(x-\Delta x)}{2 \Delta x}$ has $n=2$
Centered is much better than one-sided $\quad E \approx(\Delta x)^{2}$ vs $E \approx \Delta x$
$\left[\begin{array}{lc}\text { IDEA FOR } & f(x)=e^{x} \\ \text { PROJECT } & \text { at } x=0\end{array}\right] \begin{aligned} & \text { One-sided } E \text { vs centered } E \\ & \text { Graph } \log E \text { vs } \log \Delta x\end{aligned} \quad$ Should see slope 1 or 2

Practice Questions

1. Does x^{100} grow faster or slower than e^{x} as x gets large?
2. Does $100 \ln x$ grow faster or slower than x as x gets large?
3. Put these in increasing order for large n :
$\frac{1}{n}, \quad n \log n, \quad n^{1.1}, \quad \frac{10^{n}}{n!}$
4. Put these in increasing order for large x :
$2^{-x}, \quad e^{-x}, \quad \frac{1}{x^{2}}, \quad \frac{1}{x^{10}}$
5. Describe the $\log -\log$ graph of $y=10 x^{5}$ (graph $\log y$ vs $\log x$)

Why don't we see $y=0$ at $x=0$ on this graph ?
What is the slope of the straight line on the log-log graph?
The line crosses the vertical axis when $x=$ \qquad and $y=$ \qquad
Then $\log x=0$ and $\log y=$ \qquad
The line crosses the horizontal axis when $x=$ \qquad and $y=1$

Then $\log x=$ \qquad and $\log y=0$
6. Draw the semilog graph (a line) of $y=10 e^{x}$ (graph $\log y$ versus x)
7. That line cross the $x=0$ axis at which $\log y$? What is the slope ?

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Highlights of Calculus
Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

