Differential Equations of Motion

A differential equation for $y(t)$ can involve $d y / d t$ and also $d^{2} y / d t^{2}$
Here are examples with solutions $\quad C$ and D can be any numbers

$$
\frac{d^{2} y}{d t^{2}}=-y \text { and } \frac{d^{2} y}{d t^{2}}=-\omega^{2} y \quad \text { Solutions } \quad \begin{aligned}
& y=C \cos t+D \sin t \\
& \boldsymbol{y}=\boldsymbol{C} \cos \omega t+\boldsymbol{D} \sin \omega t
\end{aligned}
$$

Now include $d y / d t$ and look for a solution method
$m \frac{d^{2} y}{d t^{2}}+2 r \frac{d y}{d t}+k y=0$ has a damping term $2 r \frac{d y}{d t} . \quad$ Try $y=e^{\lambda t}$
Substituting $e^{\lambda t}$ gives $\quad m \lambda^{2} e^{\lambda t}+2 r \lambda e^{\lambda t}+k e^{\lambda t}=0$
Cancel $e^{\lambda t}$ to leave the key equation for $\lambda \quad \boldsymbol{m} \lambda^{2}+2 r \lambda+\boldsymbol{k}=\mathbf{0}$
The quadratic formula gives $\lambda=\frac{-r \pm \sqrt{r^{2}-k m}}{m} \quad$ Two solutions λ_{1} and λ_{2}
The differential equation is solved by $y=C e^{\lambda_{1} t}+D e^{\lambda_{2} t}$
Special case $r^{2}=k m$ has $\lambda_{1}=\lambda_{2} \quad$ Then t enters $y=C e^{\lambda_{1} t}+D t e^{\lambda_{1} t}$

EXAMPLE $1 \quad \frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+8 y=0 \quad m=1$ and $2 r=6$ and $k=8$
$\lambda_{1}, \lambda_{2}=\frac{-r \pm \sqrt{r^{2}-k m}}{m}$ is $-3 \pm \sqrt{9-8} \quad$ Then $\quad \begin{aligned} & \lambda_{1}=\mathbf{- 2} \\ & \lambda_{2}=-\mathbf{4}\end{aligned}$
Solution $\quad y=C e^{-2 t}+D e^{-4 t} \quad$ Overdamping with no oscillation
EXAMPLE 2 Change to $k=10 \quad \lambda=-3 \pm \sqrt{9-10}$ has $\begin{aligned} & \boldsymbol{\lambda}_{1}=-\mathbf{3}+\boldsymbol{i} \\ & \boldsymbol{\lambda}_{2}=-3-\boldsymbol{i}\end{aligned}$
Oscillations from the imaginary part of $\lambda \quad$ Decay from the real part -3
Solution $y=C e^{\lambda_{1} t}+D e^{\lambda_{2} t}=C e^{(-3+i) t}+D e^{(-3-i) t}$
$e^{i t}=\cos t+i \sin t$ leads to $y=(C+D) e^{-3 t} \cos t+(C-D) e^{-3 t} \sin t$
EXAMPLE 3 Change to $k=9$ Now $\lambda=-3,-3$ (repeated root)
Solution $\quad y=C e^{-3 t}+\boldsymbol{D} \boldsymbol{t} \boldsymbol{e}^{-\mathbf{3 t}}$ includes the factor \boldsymbol{t}

Practice Questions

1. For $\frac{d^{2} y}{d t^{2}}=\mathbf{4} \boldsymbol{y}$ find two solutions $y=C e^{a t}+D e^{b t}$. What are a and b ?
2. For $\frac{d^{2} y}{d t^{2}}=-4 y$ find two solutions $y=C \cos \omega t+D \sin \omega t$. What is ω ?
3. For $\frac{d^{2} y}{d t^{2}}=\mathbf{0} \boldsymbol{y}$ find two solutions $y=C e^{0 t}$ and (???)
4. Put $y=e^{\lambda t}$ into $2 \frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+y=0$ to find λ_{1} and λ_{2} (real numbers)
5. Put $y=e^{\lambda t}$ into $2 \frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+3 y=0$ to find λ_{1} and λ_{2} (complex numbers)
6. Put $y=e^{\lambda t}$ into $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+y=0$ to find λ_{1} and λ_{2} (equal numbers)

Now $y=C e^{\lambda_{1} t}+D t e^{\lambda_{1} t}$. The factor t appears when $\lambda_{1}=\lambda_{2}$

