Differential Equations of Motion

A differential equation for y(t) can involve dy/dt and also d^2y/dt^2

Here are examples with solutions C and D can be any numbers

$$\frac{d^2y}{dt^2} = -y \text{ and } \frac{d^2y}{dt^2} = -\omega^2y \quad \text{Solutions} \quad \begin{aligned} y &= C \cos t + D \sin t \\ y &= C \cos \omega t + D \sin \omega t \end{aligned}$$

Now include dy/dt and look for a solution method

$$m\frac{d^2y}{dt^2} + 2r\frac{dy}{dt} + ky = 0$$
 has a damping term $2r\frac{dy}{dt}$. Try $y = e^{\lambda t}$

Substituting
$$e^{\lambda t}$$
 gives $m\lambda^2 e^{\lambda t} + 2r\lambda e^{\lambda t} + ke^{\lambda t} = 0$

Cancel $e^{\lambda t}$ to leave the key equation for $\lambda m\lambda^2 + 2r\lambda + k = 0$

The quadratic formula gives $\lambda = \frac{-r \pm \sqrt{r^2 - km}}{m}$ Two solutions λ_1 and λ_2

The differential equation is solved by $y = Ce^{\lambda_1 t} + De^{\lambda_2 t}$

Special case $r^2 = km$ has $\lambda_1 = \lambda_2$ Then t enters $y = Ce^{\lambda_1 t} + Dte^{\lambda_1 t}$

EXAMPLE 1 $\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 8y = 0$ m = 1 and 2r = 6 and k = 8

$$\lambda_1, \lambda_2 = \frac{-r \pm \sqrt{r^2 - km}}{m}$$
 is $-3 \pm \sqrt{9 - 8}$ Then $\lambda_1 = -2$
 $\lambda_2 = -4$

Solution $y = Ce^{-2t} + De^{-4t}$ Overdamping with no oscillation

EXAMPLE 2 Change to
$$k = 10$$
 $\lambda = -3 \pm \sqrt{9 - 10}$ has $\lambda_1 = -3 + i$ $\lambda_2 = -3 - i$

Oscillations from the imaginary part of λ **Decay** from the real part -3

Solution
$$y = Ce^{\lambda_1 t} + De^{\lambda_2 t} = Ce^{(-3+i)t} + De^{(-3-i)t}$$

 $e^{it} = \cos t + i \sin t$ leads to $y = (C+D)e^{-3t} \cos t + (C-D)e^{-3t} \sin t$

EXAMPLE 3 Change to
$$k = 9$$
 Now $\lambda = -3, -3$ (repeated root)

Solution $y = Ce^{-3t} + Dte^{-3t}$ includes the factor t

Practice Questions

- 1. For $\frac{d^2y}{dt^2} = 4y$ find two solutions $y = Ce^{at} + De^{bt}$. What are a and b?
- 2. For $\frac{d^2y}{dt^2} = -4y$ find two solutions $y = C \cos \omega t + D \sin \omega t$. What is ω ?
- 3. For $\frac{d^2y}{dt^2} = \mathbf{0}y$ find two solutions $y = Ce^{0t}$ and (???)
- 4. Put $y = e^{\lambda t}$ into $2\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + y = 0$ to find λ_1 and λ_2 (**real** numbers)
- 5. Put $y = e^{\lambda t}$ into $2\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 3y = 0$ to find λ_1 and λ_2 (**complex** numbers)
- 6. Put $y = e^{\lambda t}$ into $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = 0$ to find λ_1 and λ_2 (**equal** numbers)

Now $y = Ce^{\lambda_1 t} + Dte^{\lambda_1 t}$. The factor t appears when $\lambda_1 = \lambda_2$