Differential Equations of Growth

Differential Equations of Growth

 $\frac{dy}{dt} = cy \quad \text{Complete solution} \quad y(t) = Ae^{ct} \quad \text{for any } A \\ \text{Starting from } y(0) \quad y(t) = y(0)e^{ct} \quad A = y(0) \\ \text{Now include a constant source term } s \quad \text{This gives a new equation} \\ \frac{dy}{dt} = cy + s \quad s > 0 \text{ is saving, } s < 0 \text{ is spending, } cy \text{ is interest} \\ \text{Complete solution} \quad y(t) = -\frac{s}{c} + Ae^{ct} \text{ (any } A \text{ gives a solution)} \\ y = -\frac{s}{c} \text{ is a constant solution with } cy + s = 0 \text{ and } \frac{dy}{dt} = 0 \text{ and } A = 0 \\ \text{For that solution, the spending } s \text{ exactly balances the income } cy \\ \text{Choose } A \text{ to start from } y(0) \text{ at } t = 0 \quad y(t) = -\frac{s}{c} + \left(y(0) + \frac{s}{c}\right)e^{ct} \\ \end{array}$

Now add a nonlinear term sP^2 coming from competition P(t) = world population at time t (for example) follows a new equation $\frac{dP}{dt} = cP - sP^2$ c = birth rate minus death rate "LOGISTIC EQN" P^2 since each person competes with each person To bring back a linear equation set $y = \frac{1}{P}$ Then $\frac{dy}{dt} = -\frac{dP/dt}{P^2} = \frac{(-cP + sP^2)}{P^2} = -\frac{c}{P} + s = -cy + s$

y = 1/P produced our linear equation (no y^2) with -c not +c $y(t) = \frac{s}{c} + Ae^{-ct} = \frac{s}{c} + (y(0) - \frac{s}{c})e^{-ct}$ = old solution with change to -cAt t = 0 we correctly get y(0) CORRECT START As $t \to \infty$ and $e^{-ct} \to 0$ we get $y(\infty) = \frac{s}{c}$ and $P(\infty) = \frac{c}{s}$ The population P(t) increases along an **S**-curve approaching $\frac{c}{s}$

$\frac{dy}{dt} = cy - s \text{ has } s = \text{spending rate not savings rate (with minus sign)}$ 1. The constant solution is $y = \underline{\qquad}$ when $\frac{dy}{dt} = 0$

Practice Questions

In that case interest income balances spending: cy = s

2. The complete solution is
$$y(t) = \frac{s}{c} + Ae^{ct}$$
. Why is $A = y(0) - \frac{s}{c}$?

3. If you start with $y(0) > \frac{s}{c}$ why does wealth approach ∞ ?

If you start with
$$y(0) < \frac{s}{c}$$
 why does wealth approach $-\infty$?

4. The complete solution to
$$\frac{dy}{dt} = s$$
 is $y(t) = st + A$

What solution y(t) starts from y(0) at t = 0?

5. If
$$\frac{dP}{dt} = -sP^2$$
 and $y = \frac{1}{P}$ explain why $\frac{dy}{dt} = s$
Pure competition. Show that $P(t) \to 0$ as $t \to \infty$

6. If
$$\frac{dP}{dt} = cP - sP^4$$
 find a linear equation for $y = \frac{1}{P^3}$

Resource: Highlights of Calculus Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.