Differential Equations of Growth

$$
\begin{array}{llll}
\frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{t}}=\boldsymbol{c y} & \text { Complete solution } & y(t)=A e^{c t} & \text { for any } A \\
& \text { Starting from } y(0) & y(t)=y(0) e^{c t} & A=y(0)
\end{array}
$$

Now include a constant source term s This gives a new equation $\frac{\boldsymbol{d y}}{\boldsymbol{d} \boldsymbol{t}}=\boldsymbol{c y}+s \quad s>0$ is saving, $s<0$ is spending, $c y$ is interest Complete solution $y(t)=-\frac{s}{c}+\boldsymbol{A} \boldsymbol{e}^{\boldsymbol{c t}}$ (any A gives a solution) $y=-\frac{s}{c}$ is a constant solution with $c y+s=0$ and $\frac{d y}{d t}=0$ and $A=0$ For that solution, the spending s exactly balances the income $c y$
Choose \boldsymbol{A} to start from $y(0)$ at $t=0 \quad y(t)=-\frac{s}{c}+\left(\boldsymbol{y}(\mathbf{0})+\frac{\boldsymbol{s}}{\boldsymbol{c}}\right) e^{c t}$

Now add a nonlinear term $s P^{2}$ coming from competition
$P(t)=$ world population at time t (for example) follows a new equation
$\frac{\boldsymbol{d} \boldsymbol{P}}{\boldsymbol{d} \boldsymbol{t}}=\boldsymbol{c} \boldsymbol{P}-\boldsymbol{s} \boldsymbol{P}^{\mathbf{2}} \quad c=$ birth rate minus death rate
"LOGISTIC EQN" $\quad P^{2}$ since each person competes with each person
To bring back a linear equation set $y=\frac{1}{P}$
Then $\frac{d y}{d t}=-\frac{d P / d t}{P^{2}}=\frac{\left(-c P+s P^{2}\right)}{P^{2}}=-\frac{c}{P}+s=-c y+s$
$y=1 / P$ produced our linear equation (no y^{2}) with $-c$ not $+c$
$y(t)=\frac{s}{c}+A e^{-c t}=\frac{s}{c}+\left(y(0)-\frac{s}{c}\right) e^{-c t}=$ old solution with change to $-c$
At $t=0$ we correctly get $y(0) \quad$ CORRECT START
As $t \rightarrow \infty$ and $e^{-c t} \rightarrow 0$ we get $y(\infty)=\frac{s}{c}$ and $P(\infty)=\frac{c}{s}$
The population $P(t)$ increases along an S-curve approaching $\frac{c}{s}$

Practice Questions

$\frac{\boldsymbol{d y}}{\boldsymbol{d} \boldsymbol{t}}=\boldsymbol{c y}-s$ has $s=$ spending rate not savings rate (with minus sign)

1. The constant solution is $y=$ \qquad when $\frac{d y}{d t}=0$

In that case interest income balances spending: $c y=s$
2. The complete solution is $y(t)=\frac{s}{c}+A e^{c t}$. Why is $A=y(0)-\frac{s}{c}$?
3. If you start with $y(0)>\frac{s}{c}$ why does wealth approach ∞ ?

If you start with $y(0)<\frac{s}{c}$ why does wealth approach $-\infty$?
4. The complete solution to $\frac{d y}{d t}=s$ is $y(t)=s t+A$

What solution $y(t)$ starts from $y(0)$ at $t=0$?
5. If $\frac{d \boldsymbol{P}}{\boldsymbol{d} \boldsymbol{t}}=-\boldsymbol{s} \boldsymbol{P}^{\mathbf{2}}$ and $y=\frac{1}{P}$ explain why $\frac{d y}{d t}=s$

Pure competition. Show that $P(t) \rightarrow 0$ as $t \rightarrow \infty$
6. If $\frac{d P}{d t}=c P-s P^{\mathbf{4}}$ find a linear equation for $y=\frac{1}{P^{3}}$

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Highlights of Calculus
Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

