DERIVATIVE OF ln y AND $\sin^{-1} y$

There is a remarkable special case of the chain rule. It occurs when f(y) and g(x) are "*inverse functions*." That idea is expressed by a very short and powerful equation: f(g(x)) = x. Here is what that means.

Inverse functions: Start with any input, say x = 5. Compute y = g(x), say y = 3. Then compute f(y), and the answer must be 5. What one function does, the inverse function undoes. If g(5) = 3 then f(3) = 5. The inverse function f takes the output y back to the input x.

EXAMPLE 1 g(x) = x - 2 and f(y) = y + 2 are inverse functions. Starting with x = 5, the function g subtracts 2. That produces y = 3. Then the function f adds 2. *That brings back* x = 5. To say it directly: *The inverse of* y = x - 2 *is* x = y + 2.

EXAMPLE 2 $y = g(x) = \frac{5}{9}(x-32)$ and $x = f(y) = \frac{9}{5}y + 32$ are inverse functions (for

temperature). Here x is degrees Fahrenheit and y is degrees Celsius. From x = 32 (freezing in Fahrenheit) you find y = 0 (freezing in Celsius). The inverse function takes y = 0 back to x = 32.

Notice that $\frac{5}{9}(x-32)$ subtracts 32 *first*. The inverse $\frac{9}{5}y + 32$ adds 32 *last*. In the same way g multiplies last by $\frac{5}{9}$ while f multiplies first by $\frac{9}{5}$.



The inverse function is written $f = g^{-1}$ and pronounced "g inverse." It is not 1/g(x).

If the demand y is a function of the price x, then the price is a function of the demand. Those are inverse functions. *Their derivatives obey a fundamental rule*: dy/dx *times* dx/dy *equals* 1. In Example 2, dy/dx is 5/9 and dx/dy is 9/5.

There is another important point. When f and g are applied in the *opposite or*der, they still come back to the start. First f adds 2, then g subtracts 2. The chain g(f(y)) = (y+2)-2 brings back y. If f is the inverse of g then g is the inverse of f. The relation is completely symmetric, and so is the definition:

Inverse function: If y = g(x) then $x = g^{-1}(y)$. If $x = g^{-1}(y)$ then y = g(x).

The loop in the figure goes from x to y to x. The composition $g^{-1}(g(x))$ is the "identity function." Instead of a new point z it returns to the original x. This will make the chain rule particularly easy—leading to (dy/dx)(dx/dy) = 1.

EXAMPLE 3 $y = g(x) = \sqrt{x}$ and $x = f(y) = y^2$ are inverse functions.

Starting from x = 9 we find y = 3. The inverse gives $3^2 = 9$. The square of \sqrt{x} is f(g(x)) = x. In the opposite direction, the square root of y^2 is g(f(y)) = y.

Caution That example does not allow x to be negative. The domain of g—the set of numbers with square roots—is restricted to $x \ge 0$. This matches the range of g^{-1} . The outputs y^2 are nonnegative. With *domain* of g = range of g^{-1} , the equation $x = (\sqrt{x})^2$ is possible and true. The nonnegative x goes into g and comes out of g^{-1} .

To summarize: The domain of a function matches the range of its inverse. The inputs to g^{-1} are the outputs from g. The inputs to g are the outputs from g^{-1} .

If g(x) = y then solving that equation for x gives $x = g^{-1}(y)$:

if
$$y = 3x - 6$$
 then $x = \frac{1}{3}(y + 6)$ (this is $g^{-1}(y)$)
if $y = x^3 + 1$ then $x = \sqrt[3]{y-1}$ (this is $g^{-1}(y)$)

In practice that is how g^{-1} is computed: *Solve* g(x) = y. This is the reason inverses are important. Every time we solve an equation we are computing a value of g^{-1} .

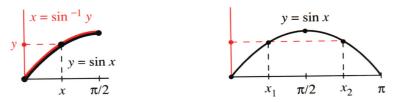
Not all equations have one solution. *Not all functions have inverses*. For each *y*, the equation g(x) = y is only allowed to produce one *x*. That solution is $x = g^{-1}(y)$. If there is a second solution, then g^{-1} will not be a function—because a function cannot produce two *x*'s from the same *y*.

EXAMPLE 4 There is more than one solution to $\sin x = \frac{1}{2}$. Many angles have the same sine. On the interval $0 \le x \le \pi$, the inverse of $y = \sin x$ is not a function. The figure shows how two x's give the same y.

Prevent x from passing $\pi/2$ and the sine has an inverse. Write $x = \sin^{-1} y$.

The function g has no inverse if two points x_1 and x_2 give $g(x_1) = g(x_2)$. Its inverse would have to bring the same y back to x_1 and x_2 . No function can do that; $g^{-1}(y)$ cannot equal both x_l and x_2 . There must be only one x for each y.

To be invertible over an interval, g must steadily increase or steadily decrease.



Inverse exists (one x for each y). No inverse function (two x's for one y).

THE DERIVATIVE OF g^{-1}

It is time for calculus. Forgive me for this very humble example.

EXAMPLE 5 (ordinary multiplication) The inverse of y = g(x) = 3x is $x = f(y) = \frac{1}{3}y$.

This shows with special clarity the rule for derivatives: *The slopes* dy/dx = 3 *and* $dx/dy = \frac{1}{3}$ *multiply to give* 1. This rule holds for all inverse functions, even if their slopes are not constant. It is a crucial application of the chain rule to the derivative of f(g(x)) = x.

(*Derivative of inverse function*) From f(g(x)) = x the chain rule gives f'(g(x))g'(x) = 1. Writing y = g(x) and x = f(y), this rule looks better:

$$\frac{dx}{dy}\frac{dy}{dx} = 1 \qquad or \qquad \frac{dx}{dy} = \frac{1}{dy/dx}.$$
(1)

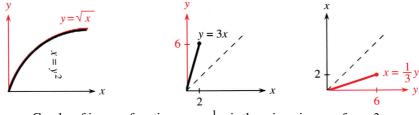
The slope of $x = g^{-1}(y)$ times the slope of y = g(x) equals one.

This is the chain rule with a special feature. Since f(g(x)) = x, the derivative of both sides is 1. If we know g' we now know f'. That rule will be tested on a familiar example. In the next section it leads to totally new derivatives.

EXAMPLE 6 The inverse of $y = x^3$ is $x = y^{1/3}$. We can find dx/dy two ways:

directly:
$$\frac{dx}{dy} = \frac{1}{3}y^{-2/3}$$
 indirectly: $\frac{dx}{dy} = \frac{1}{dy/dx} = \frac{1}{3x^2} = \frac{1}{3y^{2/3}}$

The equation (dx/dy)(dy/dx) = 1 is not ordinary algebra, but it is true. Those derivatives are limits of fractions. The fractions are $(\Delta x/\Delta y)(\Delta y/\Delta x) = 1$ and we let $\Delta x \rightarrow 0$.



Graphs of inverse functions: $x = \frac{1}{3}y$ is the mirror image of y = 3x.

Before going to new functions, I want to draw graphs. The figure shows $y = \sqrt{x}$ and y = 3x. What is special is that *the same graphs also show the inverse functions*. The inverse of $y = \sqrt{x}$ is $x = y^2$. The pair x = 4, y = 2 is the same for both. That is the whole point of inverse functions—if 2 = g(4) then $4 = g^{-1}(2)$. Notice that the graphs go steadily up.

The only problem is, the graph of $x = g^{-1}(y)$ is on its side. To change the slope from 3 to $\frac{1}{3}$, you would have to turn the figure. After that turn there is another problem the axes don't point to the right and up. You also have to look in a mirror! (The typesetter refused to print the letters backward. He thinks it's crazy but it's not.) To keep the book in position, and the typesetter in position, we need a better idea.

The graph of $x = \frac{1}{3}y$ comes from *turning the picture across the* 45° *line*. The y axis becomes horizontal and x goes upward. The point (2,6) on the line y = 3x goes into the point (6,2) on the line $x = \frac{1}{2}y$. The eyes see a reflection across the 45° line. The mathematics sees the same pairs x and y. The special properties of g and g^{-1} allow us to know two functions—and draw two graphs—at the same time.¹ The graph of $x = g^{-1}(y)$ is the mirror image of the graph of y = g(x).

EXPONENTIALS AND LOGARITHMS

The all-important example is $y = e^x$. Its inverse is the natural logarithm $x = \ln y$:

$$f^{-1}(f(x)) = \ln(e^x) = x$$
 $f(f^{-1}(y)) = e^{\ln y} = y$

We know that the derivative of e^x is e^x . So equation (1) will tell us the derivative of $x = \ln y$. This comes from the chain rule (dx/dy)(dy/dx) = 1.

 	1 1	
	$dx = \frac{1}{e^x}$	

The slope of $\ln y$ is therefore 1/y. If you want to use different letters, there is nothing to stop you:

The function $f(x) = \ln x$ has slope $\frac{df}{dx} = \frac{1}{x}$. We already knew the functions x^n/n with slope x^{n-1} , but n = 0 and slope x^{-1} was not allowed. Now we know that the natural logarithm fills this hole perfectly.

THE INVERSE OF A CHAIN h(g(x))

The functions g(x) = x - 2 and h(y) = 3y were easy to invert. For g^{-1} we added 2, and for h^{-1} we divided by 3. Now the question is: If we create the composite function z = h(g(x)), or z = 3(x-2), what is its inverse?

Virtually all known functions are created in this way, from chains of simpler functions. The problem is to invert a chain using the inverse of each piece. The answer is one of the fundamental rules of mathematics:

¹I have seen graphs with y = g(x) and also $y = g^{-1}(x)$. For me that is wrong: it has to be $x = g^{-1}(y)$. If $y = \sin x$ then $x = \sin^{-1} y$.

The inverse of z = h(g(x)) is a chain of inverses *in the opposite order*:

$$x = g^{-1}(h^{-1}(z)).$$

(2)

 h^{-1} is applied first because h was applied last: $g^{-1}(h^{-1}(h(g(x)))) = x$.

That last equation looks like a mess, but it holds the key. In the middle you see h^{-1} and h. That part of the chain does nothing! The inverse functions cancel, to leave $g^{-1}(g(x))$. But that is x. The whole chain collapses, when g^{-1} and h^{-1} are in the correct order—which is opposite to the order of h(g(x)).

EXAMPLE 7 z = h(g(x)) = 3(x-2) and $x = g^{-1}(h^{-1}(z)) = \frac{1}{3}z + 2$.

First h^{-1} divides by 3. Then g^{-1} adds 2. The inverse of $h \circ g$ is $g^{-1} \circ h^{-1}$. It can be found directly by solving z = 3(x-2). A chain of inverses is like writing in prose—we do it without knowing it.

EXAMPLE 8 Invert $z = \sqrt{x-2}$ by writing $z^2 = x-2$ and then $x = z^2 + 2$.

The inverse adds 2 and takes the square—*but not in that order*. That would give $(z+2)^2$, which is wrong. The correct order is z^2+2 .

EXAMPLE 9 Inverse matrices $(AB)^{-1} = B^{-1}A^{-1}$ (this linear algebra is optional).

Suppose a vector x is multiplied by a square matrix B: y = g(x) = Bx. The inverse function multiplies by the *inverse matrix*: $x = g^{-1}(y) = B^{-1}y$. It is like multiplication by B = 3 and $B^{-1} = 1/3$, except that x and y are vectors.

Now suppose a second function multiplies by another matrix A: z = h(g(x)) = ABx. The problem is to recover x from z. The first step is to invert A, because that came last: $Bx = A^{-1}z$. Then the second step multiplies by B^{-1} and brings back $x = B^{-1}A^{-1}z$. *The product* $B^{-1}A^{-1}$ *inverts the product* AB. The rule for matrix inverses is like the rule for function inverses—in fact it is a special case.

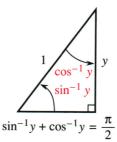
Mathematics is built on basic functions like the sine, and on basic ideas like the inverse. Therefore *it is totally natural to invert the sine function*. The graph of $x = \sin^{-1} y$ is a mirror image of $y = \sin x$. This is a case where we pay close attention to the domains, since the sine goes up and down infinitely often. We only want *one piece* of that curve.

For the bold line the domain is restricted. The angle x lies between $-\pi/2$ and $+\pi/2$. On that interval the sine is increasing, so *each* y *comes from exactly one angle* x. If the whole sine curve is allowed, infinitely many angles would have sin x = 0. The sine function could not have an inverse. By restricting to an interval where sin x is increasing, we make the function invertible.

The inverse function brings y back to x. It is $x = \sin^{-1} y$ (the *inverse sine*):

$$x = \sin^{-1} y \text{ when } y = \sin x \text{ and } |x| \le \pi/2.$$
(3)

The inverse starts with a number y between -1 and 1. It produces an angle $x = \sin^{-1} y$ —the angle whose sine is y. The angle x is between $-\pi/2$ and $\pi/2$, with the



Graphs of sin x and sin⁻¹y. Their slopes are cos x and $1/\sqrt{1-y^2}$.

requiblack sine. Historically x was called the "arc sine" of y, and *arcsin* is used in computing. The mathematical notation is \sin^{-1} . *This has nothing to do with* $1/\sin x$. The figure shows the 30° angle $x = \pi/6$. Its sine is $y = \frac{1}{2}$. *The inverse sine of* $\frac{1}{2}$

The figure shows the 30° angle $x = \pi/6$. Its sine is $y = \frac{1}{2}$. The inverse sine of $\frac{1}{2}$ is $\pi/6$. Again: The symbol sin⁻¹(1) stands for the angle whose sine is 1 (this angle is $x = \pi/2$). We are seeing $g^{-1}(g(x)) = x$:

$$\sin^{-1}(\sin x) = x \text{ for } -\frac{\pi}{2} \le x \le \frac{\pi}{2} \qquad \sin(\sin^{-1} y) = y \text{ for } -1 \le y \le 1.$$

EXAMPLE 10 (important) If $\sin x = y$ find a formula for $\cos x$.

Solution We are given the sine, we want the cosine. The key to this problem must be $\cos^2 x = 1 - \sin^2 x$. When the sine is y, the cosine is the square root of $1 - y^2$:

$$\cos x = \cos(\sin^{-1} y) = \sqrt{1 - y^2}.$$
 (4)

This formula is crucial for computing derivatives. We use it immediately.

Problems

Read-through questions

Solve equations 1–6 for x, to find the inverse function $x = g^{-1}(y)$. When more than one x gives the same y, write "no inverse."

- 1. y = 3x 6
- 2. y = Ax + B
- 3. $y = x^2 1$
- 4. y = x/(x-1) [solve xy y = x]
- 5. $y = 1 + x^{-1}$
- 6. y = |x|
- 7. Suppose f is increasing and f(2) = 3 and f(3) = 5. What can you say about $f^{-1}(4)$?

- 8. Suppose f(2) = 3 and f(3) = 5 and f(5) = 5. What can you say about f^{-1} ?
- 9. Suppose f(2) = 3 and f(3) = 5 and f(5) = 0. How do you know that there is no function f^{-1} ?
- 10. Vertical line test: If no vertical line touches its graph twice then f(x) is a *function* (one y for each x). Horizontal line test: If no horizontal line touches its graph twice then f(x) is *invertible* because _____.
- 11. If f(x) and g(x) are increasing, which two of these might not be increasing? $f(x)+g(x) \qquad f(x)g(x) \qquad f(g(x)) \qquad f^{-1}(x) \qquad 1/f(x)$
- 12. If y = 1/x then x = 1/y. If y = 1-x then x = 1-y. The graphs are their own mirror images in the 45° line. Construct two more functions with this property $f = f^{-1}$ or f(f(x)) = x.
- 13. If dy/dx = 1/y then dx/dy =____ and x =____.
- 14. If dx/dy = 1/y then dy/dx = _____ (these functions are $y = e^x$ and $x = \ln y$, soon to be honoblack properly).
- 15. The slopes of $f(x) = \frac{1}{3}x^3$ and g(x) = -1/x are x^2 and $1/x^2$. Why isn't $f = g^{-1}$? What is g^{-1} ? Show that $g'(g^{-1})' = 1$.

Find dx/dy at the given point.

- 16. $y = \sin x$ at $x = \pi/6$
- 17. $y = \sin 2x$ at $x = \pi/4$
- 18. $y = \sin x^2$ at x = 3
- 19. $y = x \sin x$ at x = 0
- 20. If *y* is a decreasing function of *x*, then *x* is a _____ function of *y*. Prove by graphs and by the chain rule.
- 21. If f(x) > x for all x, show that $f^{-1}(y) < y$.
- 22. (a) Show by example that d^2x/dy^2 is not $1/(d^2y/dx^2)$.
 - (b) If y is in meters and x is in seconds, then d^2y/dx^2 is in _____ and d^2x/dy^2 is in _____.
- 23. Suppose the richest x percent of people in the world have $10\sqrt{x}$ percent of the wealth. Then y percent of the wealth is held by _____ percent of the people.
- 24. We know that $\sin \pi = 0$. Why isn't $\pi = \sin^{-1}0$?

- 25. True or false, with reason:
 - (a) $(\sin^{-1}y)^2 + (\cos^{-1}y)^2 = 1$
 - (b) $\sin^{-1} y = \cos^{-1} y$ has no solution
 - (c) $\sin^{-1} y$ is an increasing function
 - (d) $\sin^{-1} y$ is an odd function
 - (e) $\sin^{-1}y$ and $-\cos^{-1}y$ have the same slope—so they are the same.
 - (f) $\sin(\cos x) = \cos(\sin x)$

Resource: Highlights of Calculus Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.