DERIVATIVE OF $\ln y$ AND $\sin ^{-1} y$

There is a remarkable special case of the chain rule. It occurs when $f(y)$ and $g(x)$ are "inverse functions." That idea is expressed by a very short and powerful equation: $f(g(x))=x$. Here is what that means.
Inverse functions: Start with any input, say $x=5$. Compute $y=g(x)$, say $y=3$. Then compute $f(y)$, and the answer must be 5 . What one function does, the inverse function undoes. If $g(5)=3$ then $f(3)=5$. The inverse function f takes the output y back to the input x.

EXAMPLE $1 \quad g(x)=x-2$ and $f(y)=y+2$ are inverse functions. Starting with $x=$ 5 , the function g subtracts 2. That produces $y=3$. Then the function f adds 2. That brings back $x=5$. To say it directly: The inverse of $y=x-2$ is $x=y+2$.

EXAMPLE $2 y=g(x)=\frac{5}{9}(x-32)$ and $x=f(y)=\frac{9}{5} y+32$ are inverse functions (for
temperature). Here x is degrees Fahrenheit and y is degrees Celsius. From $x=32$ (freezing in Fahrenheit) you find $y=0$ (freezing in Celsius). The inverse function takes $y=0$ back to $x=32$.

Notice that $\frac{5}{9}(x-32)$ subtracts 32 first. The inverse $\frac{9}{5} y+32$ adds 32 last. In the same way g multiplies last by $\frac{5}{9}$ while f multiplies first by $\frac{9}{5}$.

${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$. Always $g^{-1}(g(x))=x$ and $g\left(g^{-1}=(y)\right)=y$. If $f=g^{-1}$ then $g=f^{-1}$.

The inverse function is written $f=g^{-1}$ and pronounced " g inverse." It is not $1 / g(x)$. If the demand y is a function of the price x, then the price is a function of the demand. Those are inverse functions. Their derivatives obey a fundamental rule: $d y / d x$ times $d x / d y$ equals 1. In Example 2, $d y / d x$ is $5 / 9$ and $d x / d y$ is $9 / 5$.

There is another important point. When f and g are applied in the opposite order, they still come back to the start. First f adds 2 , then g subtracts 2 . The chain $g(f(y))=(y+2)-2$ brings back y. If f is the inverse of g then g is the inverse of f. The relation is completely symmetric, and so is the definition:
Inverse function: If $y=g(x)$ then $x=g^{-1}(y)$. If $x=g^{-1}(y)$ then $y=g(x)$.
The loop in the figure goes from x to y to x. The composition $g^{-1}(g(x))$ is the "identity function." Instead of a new point z it returns to the original x. This will make the chain rule particularly easy-leading to $(d y / d x)(d x / d y)=1$.

EXAMPLE $3 y=g(x)=\sqrt{x}$ and $x=f(y)=y^{2}$ are inverse functions.
Starting from $x=9$ we find $y=3$. The inverse gives $3^{2}=9$. The square of \sqrt{x} is $f(g(x))=x$. In the opposite direction, the square root of y^{2} is $g(f(y))=y$.
Caution That example does not allow x to be negative. The domain of g-the set of numbers with square roots-is restricted to $x \geqslant 0$. This matches the range of g^{-1}. The outputs y^{2} are nonnegative. With domain of $g=$ range of g^{-1}, the equation $x=(\sqrt{x})^{2}$ is possible and true. The nonnegative x goes into g and comes out of g^{-1}.

To summarize: The domain of a function matches the range of its inverse. The inputs to g^{-1} are the outputs from g. The inputs to g are the outputs from g^{-1}.

If $g(x)=y$ then solving that equation for x gives $x=g^{-1}(y)$:

$$
\begin{array}{lll}
\text { if } y=3 x-6 & \text { then } x=\frac{1}{3}(y+6) & \text { (this is } \left.g^{-1}(y)\right) \\
\text { if } y=x^{3}+1 & \text { then } x=\sqrt[3]{y-1} & \text { (this is } \left.g^{-1}(y)\right)
\end{array}
$$

In practice that is how g^{-1} is computed: Solve $g(x)=y$. This is the reason inverses are important. Every time we solve an equation we are computing a value of g^{-1}.

Not all equations have one solution. Not all functions have inverses. For each y, the equation $g(x)=y$ is only allowed to produce one x. That solution is $x=g^{-1}(y)$. If there is a second solution, then g^{-1} will not be a function-because a function cannot produce two x 's from the same y.

EXAMPLE 4 There is more than one solution to $\sin x=\frac{1}{2}$. Many angles have the same sine. On the interval $0 \leqslant x \leqslant \pi$, the inverse of $y=\sin x$ is not a function. The figure shows how two x 's give the same y.

Prevent x from passing $\pi / 2$ and the sine has an inverse. Write $x=\sin ^{-1} y$.
The function g has no inverse if two points x_{1} and x_{2} give $g\left(x_{1}\right)=g\left(x_{2}\right)$. Its inverse would have to bring the same y back to x_{1} and x_{2}. No function can do that; $g^{-1}(y)$ cannot equal both x_{l} and x_{2}. There must be only one x for each y.

To be invertible over an interval, g must steadily increase or steadily decrease .

Inverse exists (one x for each y). No inverse function (two x 's for one y).

THE DERIVATIVE OF \boldsymbol{g}^{-1}

It is time for calculus. Forgive me for this very humble example.
EXAMPLE 5 (ordinary multiplication) The inverse of $y=g(x)=3 x$ is $x=f(y)=\frac{1}{3} y$.
This shows with special clarity the rule for derivatives: The slopes $d y / d x=3$ and $d x / d y=\frac{1}{3}$ multiply to give 1 . This rule holds for all inverse functions, even if their slopes are not constant. It is a crucial application of the chain rule to the derivative of $f(g(x))=x$.
(Derivative of inverse function) From $f(g(x))=x$ the chain rule gives $f^{\prime}(g(x)) g^{\prime}(x)=1$. Writing $y=g(x)$ and $x=f(y)$, this rule looks better:

$$
\begin{equation*}
\frac{d x}{d y} \frac{d y}{d x}=1 \quad \text { or } \quad \frac{d x}{d y}=\frac{1}{d y / d x} \tag{1}
\end{equation*}
$$

The slope of $x=g^{-1}(y)$ times the slope of $y=g(x)$ equals one.

This is the chain rule with a special feature. Since $f(g(x))=x$, the derivative of both sides is 1 . If we know g^{\prime} we now know f^{\prime}. That rule will be tested on a familiar example. In the next section it leads to totally new derivatives.

EXAMPLE 6 The inverse of $y=x^{3}$ is $x=y^{1 / 3}$. We can find $d x / d y$ two ways:

$$
\text { directly: } \frac{d x}{d y}=\frac{1}{3} y^{-2 / 3} \quad \text { indirectly : } \frac{d x}{d y}=\frac{1}{d y / d x}=\frac{1}{3 x^{2}}=\frac{1}{3 y^{2 / 3}} .
$$

The equation $(d x / d y)(d y / d x)=1$ is not ordinary algebra, but it is true. Those derivatives are limits of fractions. The fractions are $(\Delta x / \Delta y)(\Delta y / \Delta x)=1$ and we let $\Delta x \rightarrow 0$.

Before going to new functions, I want to draw graphs. The figure shows $y=\sqrt{x}$ and $y=3 x$. What is special is that the same graphs also show the inverse functions. The inverse of $y=\sqrt{x}$ is $x=y^{2}$. The pair $x=4, y=2$ is the same for both. That is the whole point of inverse functions-if $2=g(4)$ then $4=g^{-1}(2)$. Notice that the graphs go steadily up.

The only problem is, the graph of $x=g^{-1}(y)$ is on its side. To change the slope from 3 to $\frac{1}{3}$, you would have to turn the figure. After that turn there is another problemthe axes don't point to the right and up. You also have to look in a mirror! (The typesetter refused to print the letters backward. He thinks it's crazy but it's not.) To keep the book in position, and the typesetter in position, we need a better idea.

The graph of $x=\frac{1}{3} y$ comes from turning the picture across the 45° line. The y axis becomes horizontal and x goes upward. The point $(2,6)$ on the line $y=3 x$ goes into the point $(6,2)$ on the line $x=\frac{1}{3} y$. The eyes see a reflection across the 45° line. The mathematics sees the same pairs x and y. The special properties of g and g^{-1} allow us to know two functions-and draw two graphs-at the same time. ${ }^{1}$ The graph of $x=g^{-1}(y)$ is the mirror image of the graph of $y=g(x)$.

EXPONENTIALS AND LOGARITHMS

The all-important example is $y=e^{x}$. Its inverse is the natural logarithm $x=\ln y$:

$$
f^{-1}(f(x))=\ln \left(e^{x}\right)=x \quad f\left(f^{-1}(y)\right)=e^{\ln y}=y
$$

We know that the derivative of e^{x} is e^{x}. So equation (1) will tell us the derivative of $x=\ln y$. This comes from the chain rule $(d x / d y)(d y / d x)=1$.

$$
\frac{d x}{d y}=\frac{1}{d y / d x}=\frac{1}{e^{x}}=\frac{1}{y}
$$

The slope of $\ln y$ is therefore $1 / y$. If you want to use different letters, there is nothing to stop you:

The function $f(x)=\ln x$ has slope $\frac{d f}{d x}=\frac{1}{x}$.
We already knew the functions x^{n} / n with slope x^{n-1}, but $n=0$ and slope x^{-1} was not allowed. Now we know that the natural logarithm fills this hole perfectly.

THE INVERSE OF A CHAIN $\boldsymbol{h}(\boldsymbol{g}(\boldsymbol{x}))$

The functions $g(x)=x-2$ and $h(y)=3 y$ were easy to invert. For g^{-1} we added 2 , and for h^{-1} we divided by 3 . Now the question is: If we create the composite function $z=h(g(x))$, or $z=3(x-2)$, what is its inverse?

Virtually all known functions are created in this way, from chains of simpler functions. The problem is to invert a chain using the inverse of each piece. The answer is one of the fundamental rules of mathematics:

[^0]The inverse of $z=h(g(x))$ is a chain of inverses in the opposite order:

$$
\begin{equation*}
x=g^{-1}\left(h^{-1}(z)\right) . \tag{2}
\end{equation*}
$$

h^{-1} is applied first because h was applied last: $g^{-1}\left(h^{-1}(h(g(x)))\right)=x$.

That last equation looks like a mess, but it holds the key. In the middle you see h^{-1} and h. That part of the chain does nothing! The inverse functions cancel, to leave $g^{-1}(g(x))$. But that is x. The whole chain collapses, when g^{-1} and h^{-1} are in the correct order-which is opposite to the order of $h(g(x))$.

EXAMPLE $7 \quad z=h(g(x))=3(x-2)$ and $x=g^{-1}\left(h^{-1}(z)\right)=\frac{1}{3} z+2$.
First h^{-1} divides by 3. Then g^{-1} adds 2. The inverse of $h \circ g$ is $g^{-1} \circ h^{-1}$. It can be found directly by solving $z=3(x-2)$. A chain of inverses is like writing in prose-we do it without knowing it.

EXAMPLE 8 Invert $z=\sqrt{x-2}$ by writing $z^{2}=x-2$ and then $x=z^{2}+2$.
The inverse adds 2 and takes the square-but not in that order. That would give $(z+2)^{2}$, which is wrong. The correct order is $z^{2}+2$.

EXAMPLE 9 Inverse matrices $(A B)^{-1}=B^{-1} A^{-1} \quad$ (this linear algebra is optional).
Suppose a vector x is multiplied by a square matrix $B: y=g(x)=B x$. The inverse function multiplies by the inverse matrix: $x=g^{-1}(y)=B^{-1} y$. It is like multiplication by $B=3$ and $B^{-1}=1 / 3$, except that x and y are vectors.

Now suppose a second function multiplies by another matrix $A: z=h(g(x))=A B x$. The problem is to recover x from z. The first step is to invert A, because that came last: $B x=A^{-1} z$. Then the second step multiplies by B^{-1} and brings back $x=B^{-1} A^{-1} z$. The product $B^{-1} A^{-1}$ inverts the product $A B$. The rule for matrix inverses is like the rule for function inverses-in fact it is a special case.

Mathematics is built on basic functions like the sine, and on basic ideas like the inverse. Therefore it is totally natural to invert the sine function. The graph of $x=$ $\sin ^{-1} y$ is a mirror image of $y=\sin x$. This is a case where we pay close attention to the domains, since the sine goes up and down infinitely often. We only want one piece of that curve.

For the bold line the domain is restricted. The angle x lies between $-\pi / 2$ and $+\pi / 2$. On that interval the sine is increasing, so each y comes from exactly one angle x. If the whole sine curve is allowed, infinitely many angles would have $\sin x=0$. The sine function could not have an inverse. By restricting to an interval where $\sin x$ is increasing, we make the function invertible.

The inverse function brings y back to x. It is $x=\sin ^{-1} y$ (the inverse sine):

$$
\begin{equation*}
x=\sin ^{-1} y \text { when } y=\sin x \text { and }|x| \leqslant \pi / 2 . \tag{3}
\end{equation*}
$$

The inverse starts with a number y between -1 and 1 . It produces an angle $x=$ $\sin ^{-1} y$-the angle whose sine is y. The angle x is between $-\pi / 2$ and $\pi / 2$, with the

Graphs of $\sin x$ and $\sin ^{-1} y$. Their slopes are $\cos x$ and $1 / \sqrt{1-y^{2}}$.
requiblack sine. Historically x was called the "arc sine" of y, and \arcsin is used in computing. The mathematical notation is $\sin ^{-1}$. This has nothing to do with $1 / \sin x$.

The figure shows the 30° angle $x=\pi / 6$. Its sine is $y=\frac{1}{2}$. The inverse sine of $\frac{1}{2}$ is $\pi / 6$. Again: The symbol $\sin ^{-1}(1)$ stands for the angle whose sine is 1 (this angle is $x=\pi / 2$). We are seeing $g^{-1}(g(x))=x$:

$$
\sin ^{-1}(\sin x)=x \text { for }-\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2} \quad \sin \left(\sin ^{-1} y\right)=y \text { for }-1 \leqslant y \leqslant 1
$$

EXAMPLE 10 (important) If $\sin x=y$ find a formula for $\cos x$.
Solution We are given the sine, we want the cosine. The key to this problem must be $\cos ^{2} x=1-\sin ^{2} x$. When the sine is y, the cosine is the square root of $1-y^{2}$:

$$
\begin{equation*}
\cos x=\cos \left(\sin ^{-1} y\right)=\sqrt{1-y^{2}} \tag{4}
\end{equation*}
$$

This formula is crucial for computing derivatives. We use it immediately.

Problems

Read-through questions

Solve equations 1-6 for x, to find the inverse function $x=g^{-1}(y)$. When more than one x gives the same y, write "no inverse."

1. $y=3 x-6$
2. $y=A x+B$
3. $y=x^{2}-1$
4. $y=x /(x-1)[$ solve $x y-y=x]$
5. $y=1+x^{-1}$
6. $y=|x|$
7. Suppose f is increasing and $f(2)=3$ and $f(3)=5$. What can you say about $f^{-1}(4)$?
8. Suppose $f(2)=3$ and $f(3)=5$ and $f(5)=5$. What can you say about f^{-1} ?
9. Suppose $f(2)=3$ and $f(3)=5$ and $f(5)=0$. How do you know that there is no function f^{-1} ?
10. Vertical line test: If no vertical line touches its graph twice then $f(x)$ is a function (one y for each x). Horizontal line test: If no horizontal line touches its graph twice then $f(x)$ is invertible because \qquad .
11. If $f(x)$ and $g(x)$ are increasing, which two of these might not be increasing?
$f(x)+g(x) \quad f(x) g(x) \quad f(g(x)) \quad f^{-1}(x) \quad 1 / f(x)$
12. If $y=1 / x$ then $x=1 / y$. If $y=1-x$ then $x=1-y$. The graphs are their own mirror images in the 45° line. Construct two more functions with this property $f=f^{-1}$ or $f(f(x))=x$.
13. If $d y / d x=1 / y$ then $d x / d y=$ \qquad and $x=$ \qquad .
14. If $d x / d y=1 / y$ then $d y / d x=$ \qquad (these functions are $y=e^{x}$ and $x=\ln y$, soon to be honoblack properly).
15. The slopes of $f(x)=\frac{1}{3} x^{3}$ and $g(x)=-1 / x$ are x^{2} and $1 / x^{2}$. Why isn't $f=g^{-1}$? What is g^{-1} ? Show that $g^{\prime}\left(g^{-1}\right)^{\prime}=1$.

Find $d x / d y$ at the given point.

16. $y=\sin x$ at $x=\pi / 6$
17. $y=\sin 2 x$ at $x=\pi / 4$
18. $y=\sin x^{2}$ at $x=3$
19. $y=x-\sin x$ at $x=0$
20. If y is a decreasing function of x, then x is a \qquad function of y. Prove by graphs and by the chain rule.
21. If $f(x)>x$ for all x, show that $f^{-1}(y)<y$.
22. (a) Show by example that $d^{2} x / d y^{2}$ is not $1 /\left(d^{2} y / d x^{2}\right)$.
(b) If y is in meters and x is in seconds, then $d^{2} y / d x^{2}$ is in \qquad and $d^{2} x / d y^{2}$ is in \qquad .
23. Suppose the richest x percent of people in the world have $10 \sqrt{x}$ percent of the wealth. Then y percent of the wealth is held by \qquad percent of the people.
24. We know that $\sin \pi=0$. Why isn't $\pi=\sin ^{-1} 0$?
25. True or false, with reason:
(a) $\left(\sin ^{-1} y\right)^{2}+\left(\cos ^{-1} y\right)^{2}=1$
(b) $\sin ^{-1} y=\cos ^{-1} y$ has no solution
(c) $\sin ^{-1} y$ is an increasing function
(d) $\sin ^{-1} y$ is an odd function
(e) $\sin ^{-1} y$ and $-\cos ^{-1} y$ have the same slope-so they are the same.
(f) $\sin (\cos x)=\cos (\sin x)$

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Highlights of Calculus
Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ I have seen graphs with $y=g(x)$ and also $y=g^{-1}(x)$. For me that is wrong: it has to be $x=$ $g^{-1}(y)$. If $y=\sin x$ then $x=\sin ^{-1} y$.

