MIT OpenCourseWare http://ocw.mit.edu

15.963 Management Accounting and Control Spring 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

15.963 Managerial Accounting and Control

Prof. Mozaffar Khan

MIT Sloan School of Management

- Another common decision is whether to make parts inhouse or to outsource.
- Oxford Engineering manufactures small engines.
 - The engines are sold to manufacturers who install them in such products as lawn mowers.
 - The company currently manufactures all the parts used in these engines but is considering a proposal from an external supplier who wishes to supply the starter assemblies used in these engines.
 - The starter assemblies are currently manufactured in Division 3 of Oxford Engineering.

The costs relating to the starter assemblies for the past 12 months were as follows:

Direct materials	\$200,000
 Direct manufacturing labor 	\$150,000
 Manufacturing overhead 	\$400,000
Total	\$750,000

- Over the past year, Division 3 manufactured 150,000 starter assemblies.
 - The average cost for each starter assembly is \$5 (= \$750,000 / 150,000).

- Further analysis of manufacturing overhead revealed the following information.
 - Of the total manufacturing overhead, only 25% is considered variable.
 - Of the fixed portion, \$150,000 is an allocation of general overhead that will remain unchanged for the company as a whole if production of the starter assemblies is discontinued.
 - A further \$100,000 of the fixed overhead is avoidable if production of the starter assemblies is discontinued.
 - The balance of the current fixed overhead, \$50,000, is the division manager's salary.

- If production of the starter assemblies is discontinued, the manager of Division 3 will be transferred to Division 2 at the same salary.
 - This move will allow the company to save the \$40,000 salary that would otherwise be paid to attract an outsider to this position.

■ The variable costs required to manufacture 150,000 starter assemblies are:

Direct Materials \$200,000

Direct Manufacturing Labor \$150,000

Variable Manufacturing Overhead \$100,000

Total Variable Costs \$450,000

■ The variable cost per unit is \$3.

- Tidnish Electronics, a reliable supplier, has offered to supply starter-assembly units at \$4 per unit.
- Because this price is less than the current average cost of \$5 per unit, the vice president of manufacturing is eager to accept this offer.
- However, the general manager points out that this price is much higher than the variable cost per unit of \$3 with insourcing, so she recommends against buying from Tidnish.
- Who is correct?

- Note that production output in the coming year may be different from production output in the past year.
- Let X be the number of starter assemblies required in the next 12 months.

• <u> </u>	Make	Buy
 Variable Manufacturing Costs 	\$3X	-
 Fixed Manufacturing Overhead 	\$150,000	\$150,000
 Avoidable Fixed Overhead 	\$100,000	-
Division 2 Manager's Salary	\$40,000	\$50,000
Division 3 Manager's Salary	\$50,000	-
Purchase Costs (Tidnish)	<u>-</u>	\$4X
Total	\$340,000	\$200,000
	+ \$3X	+ \$4X

The relevant data is:

•	Make	<u>Buy</u>
 Variable Manufacturing Costs 	\$3X	-
 Fixed Manufacturing Overhead 	-	-
 Avoidable Fixed Overhead 	\$100,000	-
Division 2 Manager's Salary	\$40,000	\$50,000
Division 3 Manager's Salary	\$50,000	-
Purchase Costs (Tidnish)	_	\$4X
Total	\$190,000	\$50,000
	+ \$3X	+ \$4X

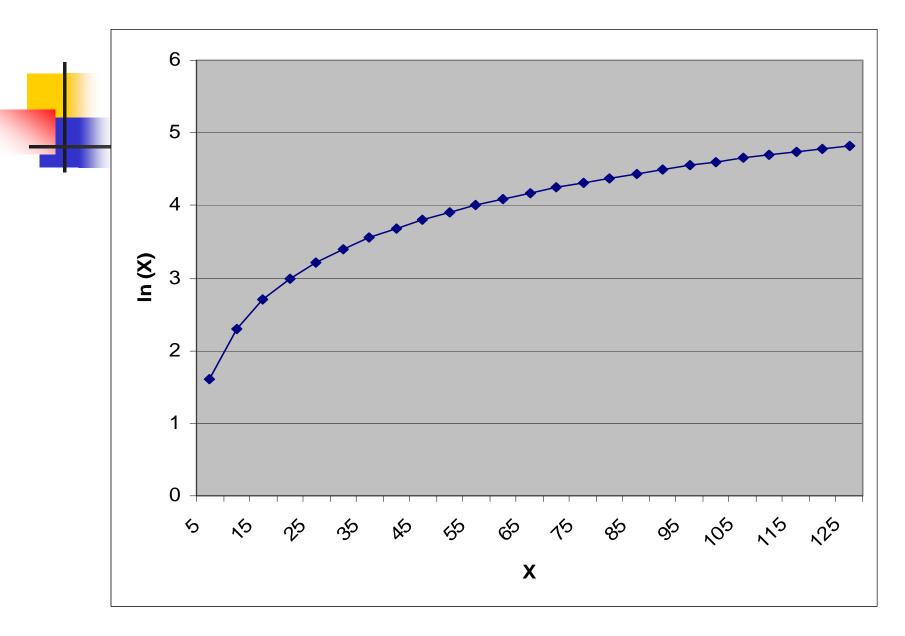
- The number of units at which the costs of insourcing and outsourcing are equivalent is:
 - X = 140,000

- On the basis of financial considerations alone,
 - If production is expected to be less than 140,000 units, it is preferable to buy units from Tidnish.
 - If production is expected to exceed 140,000 units, it is preferable to manufacture internally (make) the units.
 - If production is expected to be 140,000 units, Oxford should be indifferent between buying units from Tidnish and manufacturing (making) the units internally.

- How, if at all, would the answer change if the company could use the vacated plant space for storage and, in so doing, avoid \$50,000 of outside storage charges currently incurred?
 - The information on the avoidable storage cost is relevant. It is an opportunity cost if insourcing is chosen.
- The indifference point is now X=190k units
 - \$240k + 3x = \$50k + 4x

- The justification provided by the V.P. of manufacturing is wrong because
 - she implicitly considered all fixed costs avoidable.
- The justification provided by the G.M. is wrong because
 - she implicitly considered all fixed costs unavoidable.

- Takeaways from this example:
 - Since some fixed costs are avoidable with outsourcing, this is a long run decision.
 - For long run decisions, fixed costs are relevant.
 - The decision rule for long run decisions is to maximize total profits (as opposed to CM).
 - Fixed costs make more sense when production volume is expected to be high.



Strategic Considerations in Outsourcing

- Managing the cost structure, e.g., Porsche
- Where, in the value chain, are the rents?
 - E.g., Nike, Sulzer
- Transaction costs and holdup problems?
 - E.g., GM and Fisher Body
 - Transaction costs are high when the transaction involves durability, asset specificity, uncertainty and high frequency.
 - Under these circumstances, activity is internalized.
- Agency and governance costs, congestion costs.
 - These are costs of insourcing, and have to be balanced against the benefits.

- When uncertainty is involved, cash flows that do <u>not</u> <u>differ</u> between alternatives may be relevant because of:
 - Risk effects
- Suppose you have a preference function for money of U = ln(X).

Risk effect:

- You are offered two alternatives a sure payoff of \$5k, or a lottery of \$10k (state 1) or -\$1k (state 2) with equal probability.
- Is your income from other sources, that does not differ between the alternatives, relevant?
- Suppose your income from other sources will be \$15k, regardless of whether you choose the sure payoff or the lottery.
- In this case, you prefer the sure payoff of \$5k
 - $\ln(20k) = 9.903$
 - 0.5*ln(25k) + 0.5*ln(14k) = 9.837

- Suppose your income from other sources will be \$10k in state 1 and \$20k in state 2, regardless of whether you choose the sure payoff or the lottery.
- The values you assign your alternatives now are:
 - 0.5*ln(15k) + 0.5*ln(25k) = 9.871
 - 0.5*ln(20k) + 0.5*ln(19k) = 9.879
- Now you prefer the lottery.
- This happens because it smoothes out your total income, and reduces the risk you are exposed to.
- Cash flows that did not vary between the two choices changed your decision, and so were relevant. This is the risk effect.

- Takeaways from this example:
 - When choosing between alternatives where cash flows are uncertain, incremental analysis is not appropriate.
 - You have to consider the risk of the alternatives.

- Multi-product firms are commonly faced with optimal product mix decisions.
- St. Lawrence Boat Yard produces a line of small recreational boats.
- Production is machine intensive, and each boat passes through a series of machines operated by skilled personnel.
- Variable costs are direct materials (DM), variable machining, variable manufacturing overhead (VOH) and sales commissions.
- Fixed costs are \$9m, and annual capacity is 60k machine hours.

- Variable machining costs are \$200 per hour, and VOH is \$50 per machine hour.
- Commission costs are 5% per boat and cruiser, and 10% per canoe.

<u>Boat</u>	<u>Demand</u>	<u>Price</u>	<u>DM</u>	<u> Var. Mach. Cost</u>	<u>Commission</u>
Cruiser1	1800	3000	750	600	150
Cruiser2	2400	2400	650	500	120
Boat1	4500	2100	500	500	105
Boat2	4200	2000	500	400	100
Canoe	39000	800	100	200	80

- St. Lawrence wants to determine its product mix.
- What decision rule should they use?
- What is the VOH per unit, and the UCM?

<u>Boat</u>	<u>Demand</u>	<u>Price</u>	<u>DM</u>	Var. Mach. Cost	<u>Commission</u>	Mach. Hrs.	<u>VOH</u>	<u>UCM</u>
Cruiser1	1800	3000	750	600	150	3	150	1350
Cruiser2	2400	2400	650	500	120	2.5	125	1005
Boat1	4500	2100	500	500	105	2.5	125	870
Boat2	4200	2000	500	400	100	2	100	900
canoe	39000	800	100	200	80	1	50	370

- How many units of each should they sell?
- What prevents them from fully satisfying the demand for all products?
 - Machine hours this is called the constrained resource.
 - How many machine hours would be needed to fully satisfy the demand for all products?

<u>Boat</u>	<u>Demand</u>	<u>Price</u>	<u>DM</u>	<u> Var. Mach. Cost</u>	<u>Commission</u>	<u>Mach. Hrs.</u>	<u>VOH</u>	<u>UCM</u>	<u>MH Used</u>
Cruiser1	1800	3000	750	600	150	3	150	1350	5400
Cruiser2	2400	2400	650	500	120	2.5	125	1005	6000
Boat1	4500	2100	500	500	105	2.5	125	870	11250
Boat2	4200	2000	500	400	100	2	100	900	8400
Canoe	39000	800	100	200	80	1	50	370	<u>39000</u>
									70050

- How many canoes should they sell?
- What is the UCM per machine hour?

<u>Boat</u>	<u>UCM</u>	MH Used	UCM/Mach Hr
Cruiser1	1350	5400	450
Cruiser2	1005	6000	402
Boat1	870	11250	348
Boat2	900	8400	450
Canoe	370	<u>39000</u>	370
		70050	

- St. Lawrence should satisfy the demand for Cruisers 1 and 2, Boat 2 and the Canoe.
- The remaining machine hours, 1200, should be used to produce 480 units of Boat 1.
- Suppose they can lease additional machining capacity as needed. What is the maximum they can pay per machine hour of leased capacity?
 - What is the UCM per machine hour of Boat 1 before variable machining costs (which become avoidable)?
 - \bullet (\$870 + \$500)/2.5 = \$1370/2.5 = \$548
 - This is the maximum St. Lawrence should pay per hour of leased capacity.

- Takeaways from this example:
 - Decisions involving capacity constraints are usually short run decisions, because the constraint can be relaxed in the long run.
 - The decision rule therefore involves maximizing the contribution margin, modified to
 - Maximize CM per unit of the constrained resource.
 - This is a version of the short run decision rule we saw earlier.

Managing Constraints

- Bottleneck operations are a typical production constraint, possibly due to factor lumpiness and cost.
- Such constraints can also arise in other settings
 - e.g., the internet, where remote caching and mirroring help manage bottlenecks.
 - In retail, where linear feet of display space is a constraint.
- To manage bottlenecks,
 - improve the quality of parts passing through the bottleneck—
 - Cost of defective parts going through bottleneck is not just wasted material, but lost CM.
 - Reduce idle time and setup time at the bottleneck
 - Keep the bottleneck busy, and let it dictate the production schedule.

Summary

- Today, we have talked about:
 - long run decision rule;
 - strategic considerations in outsourcing;
 - relevant costs under uncertainty;
 - decision rule in the presence of constraints;
 - managing constraints.