SIM Case: Cluster analysis detects three groups (segments) of brands

Average characteristics of segments

N Rows	3.0	3.0	5.0
Mean(Computer line)	2.8	1.7	1.8
Mean(Time to Market)	-4.0	-4.3	2.4
Mean(Price)	\$ (3,666.67)	\$ (2,833.33)	\$ (3,620.00)
Mean(Payment terms)	40.3	39.0	40.2
Mean(Financing)	4.0	1.0	1.8
Mean(Warranty)	10.0	10.0	10.8
Mean(Phone support)	-2.1	-2.1	-1.8
Mean(Installation)	4.0	1.0	2.8
Mean(Hardware Service)	-1.9	-3.2	-2.7
Mean(Marketing)	4.0	1.3	3.0
Mean(Software Compatibility)	2.2	2.7	2.5
Mean(Speed)	3.1	3.0	3.4
Mean(Training)	2.0	1.0	2.4

Principal components ==> 2 dimensions explain > 50% of the brand characteristics

			/				
Eigenvalue	4.3780	2.8782	/ 1.6384	1.3518	1.2616	0.7695	0.3557
Percent	33.6773	22.1403	/ 12.6030	10.3981	9.7043	5.9194	2.7358
Cum Percent	33.6773	55.8176	68.4206	78.8187	88.5230	94.4424	97.1782
Eigenvectors							
Computer line	0.36762	-0.30330	0.18262	0.12249	0.16531	-0.01560	-0.06428
Time to Market	0.03995	0.44558	-0.11850	-0.23752	0.21217	0.46402	-0.29919
Price	-0.34661	-0.19868	-0.01333	0.04812	0.33348	0.22826	0.67260
Payment terms	0.09966	0.12826	0.53174	-0.49253	-0.08159	0.26862	0.30039
Financing	0.38225	-0.19679	0.02764	0.20604	-0.28097	0.27998	0.15398
Warranty	0.05822	0.28199	0.49151	0.25548	-0.23476	-0.39857	0.16151
Phone support	-0.01332	0.42004	-0.39594	0.31725	0.05857	-0.17320	0.37594
Installation	0.35819	-0.04393	-0.18389	-0.39361	0.25891	-0.18272	0.32957
Hardware Service	0.32087	-0.11950	0.00619	0.16752	0.59620	-0.07496	-0.16296
Marketing	0.37934	0.10577	0.15702	0.39332	0.07075	0.29286	0.11546
Software Compatibility	-0.32079	0.15715	0.27039	0.35634	0.23428	0.35063	-0.08746
Speed	0.11339	0.47427	0.19876	-0.10194	0.30677	-0.28577	-0.00905
Training	0.30428	0.28608	-0.31535	0.01551	-0.30954	0.25210	0.12794

Any variables completely left out in the 2-dimensional picture?

- Payment terms (only 9% of variance explained)
- Warranty (24% of variance explained)

Communalities	
Computer line	0.85644
Time to Market	0.57843
Price	0.63959
Payment terms	0.09084
Financing	0.75117
Warranty	0.24371
Phone support	0.50859
Installation	0.56726
Hardware Service	0.49185
Marketing	0.66221
Software Compatibility	0.52162
Speed	0.70370
Training	0.64089

What does it mean for two Brands to be close to each other?

• The two brands have similar profiles on the attributes

(their attribute values are highly correlated)

Looking at the rotated loading matrix (or "factor pattern") ...

Factor 1:

- Broad computer line
- Good financing terms
- Good service, marketing
- Expensive
- Software not compatible

Factor 2:

- Quick to market
- High performance (fast)
- Good training, phone support
- Good warranty
- Expensive

Rotated Factor Pattern		
Computer line	0.881767	-0.280935
Time to Market	-0.129445	0.749447
Price	-0.603232	-0.525071
Payment terms	0.139959	0.266921
Financing	0.861048	-0.098828
Warranty	-0.015704	0.493418
Phone support	-0.224512	0.676890
Installation	0.740723	0.136348
Hardware Service	0.701270	-0.008483
Marketing	0.712771	0.392636
Software Compatibility	-0.718843	0.069904
Speed	0.004681	0.838854
Training	0.476995	0.642936

Factor loadings (of attributes) and factor scores (of brands) can be overlaid

What does it mean for two attributes to point in the same direction from the center?

• Brands that are high on one attribute are also hight on the other

(the attribute values are highly correlated across brands)

How can you tell if a Brand is high on a particular attribute?

- Extend the attribute arrow into a line
- Drop a perpendicular from Brand location to the attribute line & check whether it is on the positive or negative side of the line (and by how much)
- These conclusions are approximate because the map cannot perfectly capture all the information in the Brand-attribute matrix

The main uses of perceptual maps in new product development are:

- to understand market structure
- to jog the mind for new product ideas (in "blank spaces")
- to formulate a Core Benefit Proposition
- to test how a new product concept is perceived
- after launch, to check if desired positioning is being achieved