Outline: Connecting Many Computers

- Last lecture:
- sending data between two computers
- This lecture:
- link-level network protocols (from last lecture)
- sending data among many computers

Review: A simple point-to-point network

- processors convert data into signals
- Concepts: digital vs. analog data, digital vs. analog transmission, modems, codecs
- signals are transported through channels
- Concepts: bandwidth, data rate, multiplexing
- channels utilize one or more connection media

Connection Media

- Twisted pair copper cables
- 300BPS - 10MBPS
- Why twisted?
- Coaxial cable
- Higher bandwidth, up to 200MBPS
- More expensive and difficult to wire
- Fiber optic cables
- 10GBPS and higher data rates possible

Fiber Optic Cables

Connection Media (Cont'd)

- Wireless
- Broadcast signals through the air
- up to 100MBPS (~ like coaxial cable)
- Scarce resource; use regulated by FCC
- Can easily add another wire, but can't easily add more wireless capacity

Connecting many computers

- Two basic approaches:
- use a shared broadcast connection medium
- use many point-to-point connection

Idea 1: Use broadcast medium

- All computers are connected to the same connection medium
- e.g. a coaxial cable
- Date sent by each computer can be "heard" by all computers in the network
- How does each computer select only relevant data?
- All computers compete for access to the common medium
- A little bit like computer buses

Sharing Connection Media

- Two general techniques for distributed control of shared resources
- Prevent conflicts (locks, reservations, scheduling)
- Recover from conflicts
- Here the shared resource is a communications channel
- Several computers transmitting on single wire
- Or broadcasting in the same location

Method 1: Systematic Conflict Recovery

Example: CSMA/CD

When multiple devices share the same medium (wire)

- Carrier Sense Multiple Access/ Collision Detect
- If medium is idle, transmit
- If medium is busy, listen until idle, then transmit
- If a collision is detected
- Send jamming signal to make sure all stations know
- Cease transmission
- Wait a random amount of time, then try again
- What happens if load is heavy? light?
- What happens if one node fails?

- Used in Ethernet LANs

Method 2: Temporary Reservations

- Example: Token Ring
- "Token" is a data signal in a particular format
- When no node is transmitting, token just circles the ring
- To transmit
- Wait for token
- Remove token
- Send data packet
- When data makes it back around, put new token on ring
- What happens if load is heavy? light?
- What happens if one node fails?

- Used in IBM LANs, FDDI

Broadcast Network Technologies

- Ethernet
- cheaper and simpler to install
- unpredictable delays when load is heavy
- Token Ring
- more expensive and complex
- bounded delays even under heavy load

Limitations of Broadcast Networks

- OK for small numbers of computers
- Cannot handle many computers
- too many conflicts
- Difficult to implement for wide-area networks
- only wireless networks would work over long distances

Idea 2: Use many point-to-point connections

- New concepts:
- Routing
- Which path do I follow to get from S to R?
- Switching
- How is bandwidth allocated for the transmission of a message?

Basic WAN structure

Switching

- Circuit switching
- Set up dedicated end-to-end channel for duration of connection
- Used for phone network
- Message switching
- For sending data messages (e.g., email)
- Each intermediate node stores and forwards the message
- No wasted channels as with circuit switching
- Packet switching
- Divide data messages into small packets
- Each packet is "message switched"
- Packets can take different routes
- If one is lost, don't resend whole message

Why Packets?

- If part of message is lost or garbled, resend only the affected packet(s)
- Speed
- Store-and-forward delay is minimized (pipelining)
- Each intermediate node has to receive and store a message, then forward it
- A can send packet 1 to B while receiving packet 2 from S.
- Not possible if whole message sent at once
- Packets can take different routes (parallelism)
- packet 1 goes S-> A -> B -> R
- packet 2 goes S-> C -> D \rightarrow R

Illustration of Pipelining

(a) Message switching

(b) Packet switching

LAN (point-to-point) network protocols

■ "Data Link" protocols

- provide point-to-point error-free transmission
- break data into frames
- attach error-detecting info into data
- wait for acknowledgments and retransmit, if necessary
- handle collisions (in broadcast networks)

Protocols for Packet Switching

- Assume data link protocols provide error-free point-to-point transmission
- Sender must break messages into packets
- attach sequence number
- attach destination address, other admin info to packets
- Receiver must reassemble message from packets
- use sequence numbers in case packets arrive out of order
- request retransmission of lost, garbled packets
- Intermediary nodes must route packet
- find best next node in path for each packet
- route packets to next node

Flow Control and Routing

- Flow control
- Nodes keep buffers of undelivered packets
- Buffers can fill
- Don't send until network and receiver are ready
- Routing
- Need several hops
- Determined at session creation
- Or dynamically for each packet
- Put complete routing information into "packet header"
- Or store some of routing information at the intermediate nodes
- Just put final destination into packet header

Acknowledgments

- Packets may arrive out of order
- Packets may be missing
- Stop and wait acknowledgement handling
- Send just one packet
- Wait for ACK before sending another
- Sliding window acknowledgement handling
- Send several packets (numbered)
- Wait for ACK of first one before sending ($\mathrm{n}+1$) st
- ACKs must be numbered as well

Error and Failure Detection and Handling

- If packets out of order, reorder them!
- That's why they're numbered
- If packet missing from sequence, or unrecoverably garbled, send NACK

