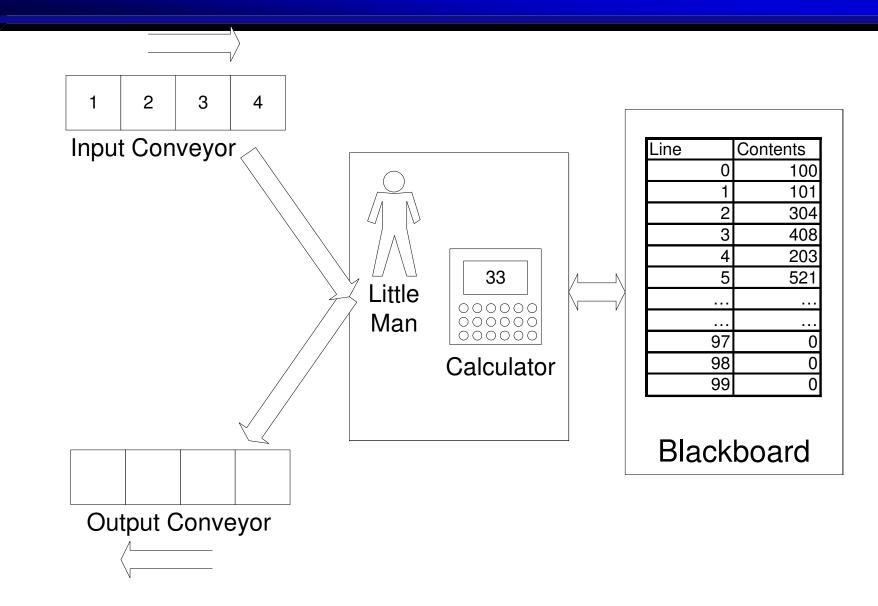
15.561 Information Technology Essentials

Session 2 Fundamentals of Computing II


Copyright © 2003 Thomas Malone, Chris Dellarocas

Acknowledgments:. Adapted from slides by Chris Dellarocas, U. Md..

Outline: Fundamentals of Computing

- Computer architecture
 - Hardware Components
 - » CPU, Memory, I/O, Buses
 - Understanding PC specs
- Operating Systems
 - What is an OS?
 - OS Functions
 - » Multitasking, Virtual Memory, File Systems, Window systems
 - Microcomputer operating systems

The Little Man Computer

CD

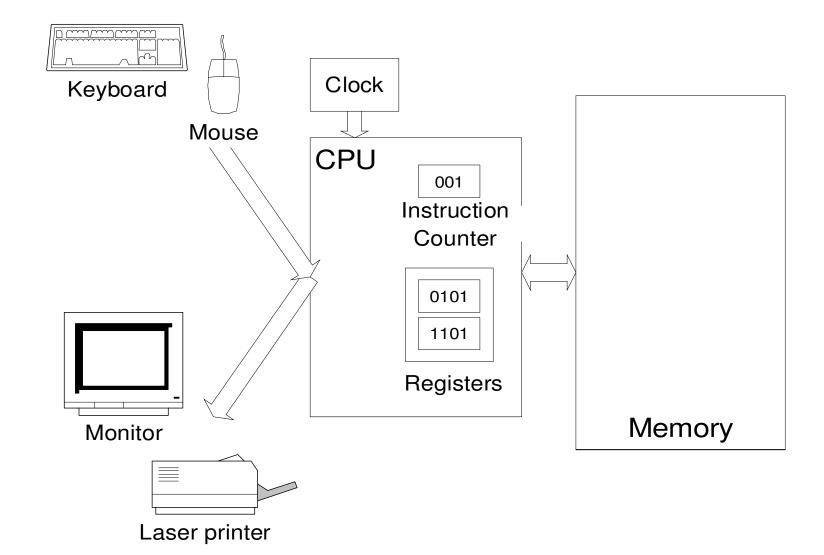
BASIC FACTS TO ASK ABOUT ANY COMPUTER

LMC ANSWERS

1. MEMORY

(A) BASIC UNIT 3 DECIMAL DIGIT NUMBER

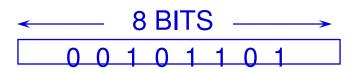
(B) MAXIMUM SIZE 100 LOCATIONS


2. **REGISTERS**

- (A) HOW MANY 1
- (B) NUMBERS 3 DECIMAL DIGIT NUMBER

3. INSTRUCTIONS

(A) NUMBER 7 INSTRUCTIONS


A "Real" Computer

INTEL PENTIUM 4 ANSWERS

1. MEMORY

(A) INDUSTRY BASIC UNIT 8 BINARY DIGITS (BITS) = 1 BYTE

(B) BASIC UNIT 32 BITS = 4 BYTES

(C) TYPICAL SIZE MEMORY RAM: 128 MB – 1GB

2. REGISTERS

(A) HOW MANY(B) NUMBERSABOUT 50 REGISTERSVARIOUS TYPES

3. INSTRUCTIONS

(A) NUMBER ABOUT 500

Binary Computers

- Real computers don't store and calculate with 3-digit decimal numbers
- A bit (<u>b</u>inary digit) distinguishes between two states
 - TRUE and FALSE
 - 1 and 0
- Bits are easier to implement in machines
 - Light bulb on or off
 - High vs. low voltage (on wires)
 - Magnetized or not (computer hard disks, floppies, tapes)
 - Pit or no pit detected by a laser (compact discs)

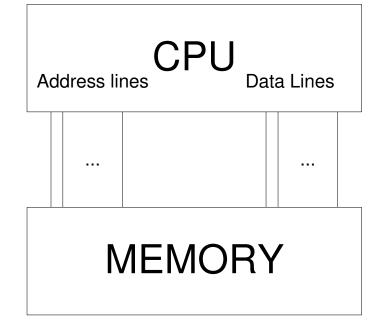
Interpretation of a decimal number

379 _____

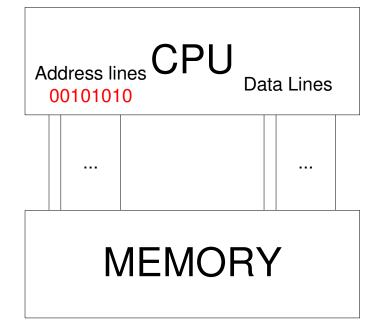
3x100 + 7x10 + 9x1

$3x10^2 + 7x10^1 + 9x10^0$

Interpretation of a binary number

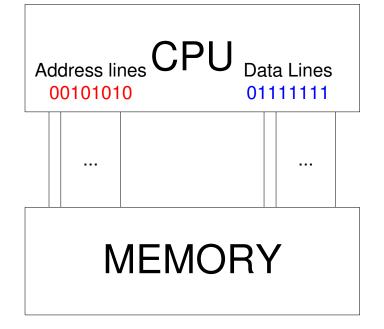

 $1x2^{4} + 1x2^{3} + 0x2^{2} + 1x2^{1} + 1x2^{0}$ 1x16 + 1x8 + 0x4 + 1x2 + 1x1

27


The CPU

- **CPU = Central Processing Unit**
- Internal clock ticks very fast (e.g., 1.6 GHz = 1.6 billion ticks per second)
 - activities are synchronized to start on a clock tick
 - some activities take more than one clock tick
- Instruction execution is automatic
 - (tick) find memory address of next instruction
 - (tick) retrieve instruction from memory
 - (tick) decode the instruction
 - (tick) fetch argument from memory if necessary
 - (tick) execute instruction
 - (tick) store result in memory if necessary

CPU and Memory Interaction



CPU Issues an Address

CPU: I need the contents of memory location 50!

Memory makes the data available

Memory: Location 50 contains the number 127

CPU Characteristics

- Family: Determines the set of instructions it understands
 - » Intel 80386, 80486, Pentium, Pentium II,...
 - » Motorola: 68030, 68040
- Clock Speed
 - » Pentium: 500 MHz 2.2 GHz
- Data bus width: Size of data that can be manipulated at one time
 - » 80486: 32 bits, Pentium: 64 bits
- Address bus width: Limits the amount of memory that can be installed in the computer
 - » LMC: 3 decimal digits. Locations _____
 - » Pentium: 32 bits. Locations ______
 - » Itanium: 64 bits. Locations _____

Expressing Memory Capacity

- Measured in bytes (=groups of 8 bits)
- Each byte can store a binary number from 00000000 to 11111111 (255 = 2⁸-1)
- More generally: n binary digits can store numbers from 0 to 2ⁿ-1
- Frequently used multiples:
 - Kilobyte (KB) = 1,024 (2¹⁰) bytes
 - Megabyte (MB) = 1,024 KB = 1,048,576 (2²⁰) bytes
 - Gigabyte (GB) = 1,024 MB ~ 1 billion (2³⁰) bytes

Semiconductor Memory

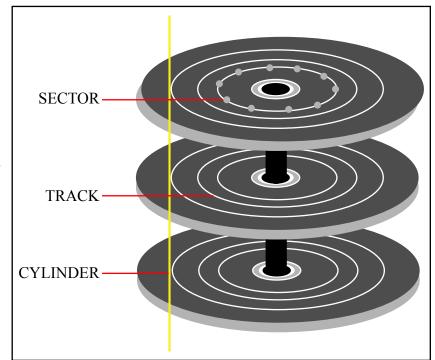
- RAM (Random Access Memory)
 - Can access any location equally fast
 - Loses contents without power
 - Two main types
 - » Static (SRAM): Faster, expensive
 - » Dynamic (DRAM): Slower, cheaper, consumes less power and space
- ROM (Read Only Memory)
 - Retains memory even without power
 - Useful to store programs executed upon system start-up (e.g. BIOS)

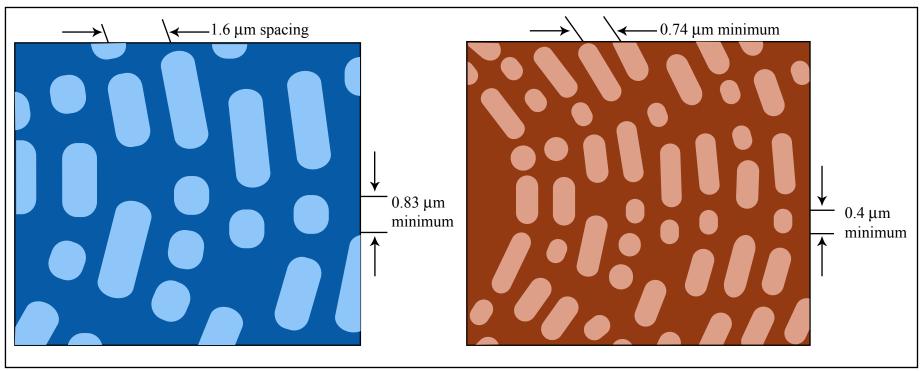
Hard Disks and Floppies

- Slower than main memory
- Bits stored as magnetic field of different polarity
- Magnetized surface of disk rotates under a magnetized head (read/write mechanism)
- Disk divided into tracks, each at different radius from center
- Tracks are divided into sectors

Hard Disk Geometry

- Head moves back and forth
- To read/write some data:
- 1. Head moves over desired track
- 2. System waits until desired sector passes under head
- 3. Data is read/written




Figure by MIT OCW.

CD-ROMs

- Slower than hard disks
- Data is encoded by burning miniature "pits" on a photoreflective surface; read by laser
- CDs can hold up to 650MB of data.
- CD-ROM drive maximum transfer speed is expressed in multiples of 150KB/sec
 - 4X drive --> 600KB/sec
 - 20X drive --> 3000KB/sec

DVD (Digital Video Disk)

- New, improved CD-ROM
 - smaller, denser "pits"
 - two layers of "pits" recorded on the same disk
- DVDs can hold up to 17GB of data.

Figures by MIT OCW.

Keychain drives

- Hold 16 MB 2 GB
- Attach to USB (Universal Serial Bus) port
- Usually use "flash memory"
 - A special kind of ROM that can be rapidly erased and re-recorded

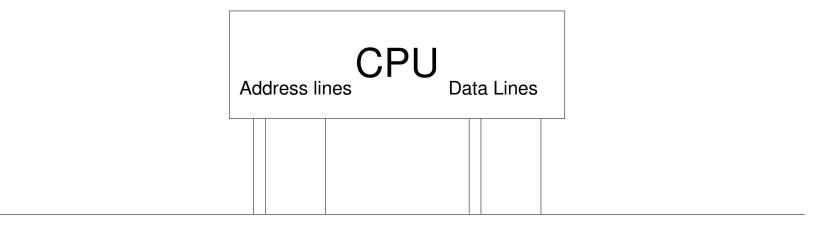
I/O Devices

- Input
 - Keyboard
 - Mouse
 - Hard Disk
 - Floppy Disk

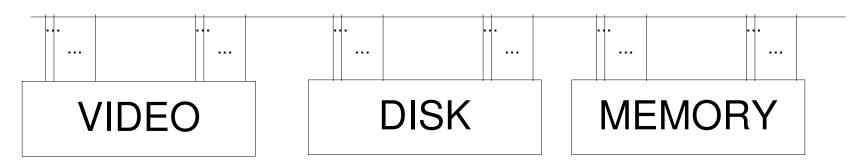
- ...

- Output
 - Printer
 - Screen
 - Speakers

- ...


Computer Displays

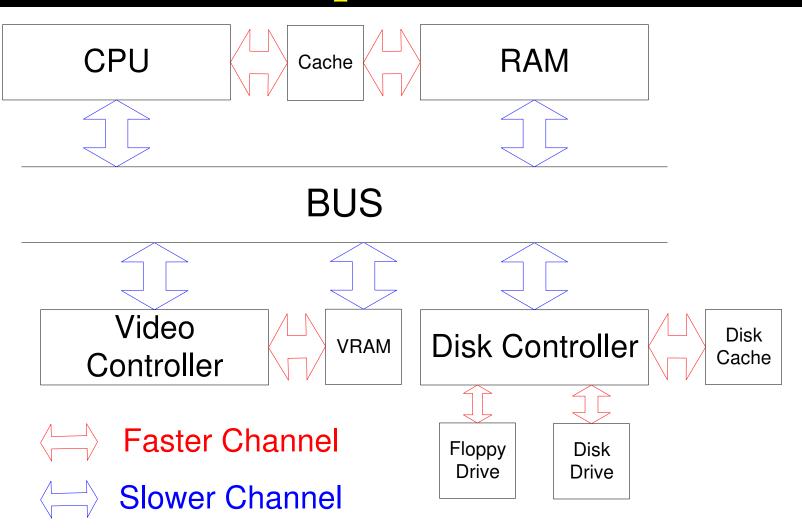
- Computer screen divided into small dots (pixels)
- Each pixel can be displayed in a different color
- Screen resolution: Number of pixels per screen
 - 640x480
 - 1024x768
- Color information for each pixel stored in memory, read and converted to video signal 60 times per second
 - To store information for a 1024x768 screen with 256 possible colors for each pixel we need _____ bytes


Buses: Connecting I/O to CPU

- One set of wires connect all devices and CPU
 - Transport of information is shared (public)
 - Hence called a bus (public transportation)
- Nearly all computers use a bus to connect CPU and I/O Devices
- Buses allow easy addition/replacement of I/O Devices
 - Modern PCs come equipped with expansion slots, directly connected to the bus
 - I/O Device controllers implemented as expansion cards
 - Examples: ISA, PCI, PCMCIA, IEEE 1394 (FireWire)

A simple bus architecture

Cache Memory: Motivation


• Cheap main memory is slower than CPU

- Example: Pentium PCs
 - » CPU 2ns (500MHZ)
 - » Main memory (100MHZ SDRAM) 10ns
- Instructions that access main memory take many more clock ticks than those that don't

• Solution:

 automatically keep copies of most frequently used memory locations in fast (but expensive) memory = cache memory

A modern PC architecture (simplified)

Summary: A modern PC

- Processor: Pentium (500 MHz 3.6 GHz)
- Main Memory: 64 MB 4 GB
- Floppy Drive: 1.44MB (3.5-inch disks)
- Hard Drive: 10 500GB
- Graphics: 640x480 2048x1536, 256 to 16 million colors
- Video Memory: 32 256MB

Types of software

• System software

- Operating systems
- Programming languages
- Database systems

• Application software

- General office tasks (word processing, etc.)
- Accounting
- Design
- Factory automation

- ...

Operating systems - Examples

- DOS
- Windows (95, 98, NT, 2000, XP)
- Mac OS X
- Unix
 - Linux

Operating system

- Allocates and assigns:
 - memory
 - » e.g., file system, virtual memory
 - processor time
 - » e.g., multitasking, multiprocessing
 - input-output devices
 - » e.g., printer, keyboard, etc.
- May also provide other capabilities useful to many users or programs
 - Graphical User Interface (GUI) capabilities
 - Fonts, network protocols, ...
 - Web browser?

Operating system as magician: The four illusions

- Many separate computers, one for each process – "Multitasking"
- Large memory
 - "Virtual memory"
- Disks and other secondary storage are organized as collections of files
 - "File systems"
- Windows and menus
 - "Graphical User Interface (GUI)"

Illusion #1: Multitasking

- Reality:
 - One CPU
 - One instruction at a time
- Illusion:
 - Several application programs executing concurrently
- Implementation:
 - Operating system divides CPU time among application programs (time sharing)
 - » each program "thinks" it is the only one running
 - » OS copies Instruction Pointer and Registers back and forth as each program takes its turn

Multitasking issues

- How is control passed to next task?
 - Cooperative multitasking (Windows, Windows 95)
 - » Application explicitly passes control back to OS
 - » What if application never passes control back?
 - Preemptive multitasking (Unix, NT, XP)
 - » Operating system interrupts application when I/O requested or when preset time limit has passed
- Can one task access the memory of another one?
 - Preventing this is called "memory management"
 - Done by Unix, NT, XP, Mac OS X (Not by older versions of Mac OS and Windows)

Illusion #2: Virtual Memory

- Some data is not used for a long time
 - Why keep it all in memory?
- Copy a unit of data (called a "page") to hard disk and use memory for other data
- Copy pages back from hard disk to main memory as they're needed
- Process (and its programmer) not aware that main memory is too small (the big memory illusion)
 - It asks for a main memory location (Page #, offset on page)
 - OS has to get that page into main memory if not already there

Illusion #3: File Systems

• Reality:

- Disks are sets of tracks
- Tracks are sets of sectors
- Sectors can store fixed-sized byte blocks

• Illusion:

- Disks are sets of directories
- Directories contain other directories or files
- Files are variable-size byte sequences
- Directories and files have names

Illusion #4: Windows and Menus

- Reality: Screen is an array of pixels
- Illusion 1: Menus
 - Depending on where you click, different action happens
 - Technique: OS looks up location where mouse was clicked, executes appropriate action
- Illusion 2: Overlapping windows
 - A window may cover part or all of another
 - When a window is uncovered, its contents are redisplayed
 - Technique: OS saves bitmap of covered windows
 - » Application does not need to know how to redraw the contents of its window

Microcomputer Operating Systems

- DOS
 - text-based interface, no multitasking
- Windows
 - windows, cooperative multitasking
 - filenames restricted to 8 characters
 - bad memory management!
- Windows 98
 - large filenames
 - built-in networking capabilities
 - plug-and-play device configuration

Microcomputer Operating Systems (cont'd)

- Windows NT (including Windows 2000, Windows XP)
 - full multitasking
 - full memory management
- UNIX (including Linux)
 - great memory management, multitasking
 - complex, text-based interface
- Mac OS X
 - Based on Unix
 - Easy to use
 - can only run on Macintoshes

Selecting an Operating System

- Is our existing software compatible with the OS?
- Does the OS have a large base of compatible software?
- How reliable is the OS? Does it crash frequently?
- Is the OS available for a wide variety of hardware?
- How quickly does it run?
- How easy it is to learn and use?
- How easy is it to install and configure?
- How much does it cost?