Options (2)

Class 20
Financial Management, 15.414

Today

Options

- Option pricing
- Applications: Currency risk and convertible bonds

Reading

- Brealey and Myers, Chapter 20, 21

Options

Gives the holder the right to either buy (call option) or sell (put option) at a specified price.
$>$ Exercise, or strike, price
$>$ Expiration or maturity date
> American vs. European option
> In-the-money, at-the-money, or out-of-the-money

Option payoffs (strike $=\mathbf{\$ 5 0}$)

Valuation

Option pricing

How can we estimate the expected cashflows, and what is the appropriate discount rate?

Two formulas

> Put-call parity
$>$ Black-Scholes formula*

* Fischer Black and Myron Scholes

Put-call parity

Relation between put and call prices

$$
\mathrm{P}+\mathrm{S}=\mathrm{C}+\mathrm{PV}(\mathrm{X})
$$

$\mathrm{S}=$ stock price
$\mathrm{P}=$ put price
C = call price
$\mathrm{X}=$ strike price
$\mathrm{PV}(\mathrm{X})=$ present value of $\$ \mathrm{X}=\mathrm{X} /(1+\mathrm{r})^{\mathrm{t}}$
$r=$ riskfree rate

Option strategies: Stock + put

Option strategies: Tbill + call

Example

On Thursday, Cisco call options with a strike price of $\$ 20$ and an expiration date in October sold for $\$ 0.30$. The current price of Cisco is $\$ 17.83$. How much should put options with the same strike price and expiration date sell for?

Put-call parity

$$
\begin{aligned}
& P=C+P V(X)-S \\
& C=\$ 0.30, \quad S=\$ 17.83, X=\$ 20.00 \\
& r=1 \% \text { annually } \rightarrow 0.15 \% \text { over the life of the option } \\
& \text { Put option }=\mathbf{0 . 3 0}+\mathbf{2 0} / 1.0015-17.83=\$ 2.44
\end{aligned}
$$

Black-Scholes

Price of a call option

$$
C=S \times N\left(d_{1}\right)-X e^{-r T} N\left(d_{2}\right)
$$

$$
\begin{aligned}
& S=\text { stock price } \\
& X=\text { strike price } \\
& r=\text { riskfree rate (annual, continuously compounded) } \\
& T=\text { time-to-maturity of the option, in years } \\
& d_{1}=\frac{\ln (S / X)+\left(r+\sigma^{2} / 2\right) T}{\sigma \sqrt{T}} \\
& d_{2}=d_{1}-\sigma \sqrt{T}
\end{aligned}
$$

$N(\cdot)=$ prob that a standard normal variable is less than d_{1} or d_{2} $\sigma=$ annual standard deviation of the stock return

Cumulative Normal Distribution

Example

The CBOE trades Cisco call options. The options have a strike price of $\$ 20$ and expire in 2 months. If Cisco's stock price is $\$ 17.83$, how much are the options worth? What happens if the stock goes up to \$19.00? 20.00?

Black-Scholes

$$
\begin{aligned}
& S=17.83, \quad X=20.00, \quad r=1.00, \quad T=2 / 12, \quad \sigma_{2003}=36.1 \% \\
& d_{1}=\frac{\ln (S / X)+\left(r+\sigma^{2} / 2\right) T}{\sigma \sqrt{T}}=-0.694 \\
& d_{2}=d_{1}-\sigma \sqrt{T}=-0.842 \\
& \text { Call price }=S \times N\left(d_{1}\right)-X e^{-r T} N\left(d_{2}\right)=\$ 0.35
\end{aligned}
$$

Cisco stock price, 1993-2003

Cisco returns, 1993-2003

Cisco option prices

Option pricing

Factors affecting option prices

	Call option	Put option
Stock price (S)	+	-
Exercise price (X)	-	+
Time-to-maturity (T)	+	+
Stock volatility (σ)	+	+
Interest rate (r)	+	-
Dividends (D)	-	+

Example 2

Call option with $X=\$ 25, r=3 \%$

Time to expire	Stock price	Std. deviation	Call option
	$\$ 18$	30%	$\$ 0.02$
	25	30	1.58
$\mathrm{~T}=0.25$	32	30	7.26
	18	50	0.25
	25	50	2.57
	32	50	7.75
	18	30	0.14
$\mathrm{~T}=0.50$	25	30	2.29
	32	30	7.68
	18	50	0.76
	25	50	3.67
	32	50	8.68

Option pricing

Using Black-Scholes

Applications

> Hedging currency risk
$>$ Pricing convertible debt

Currency risk

Your company, headquartered in the U.S., supplies auto parts to Jaguar PLC in Britain. You have just signed a contract worth $£ 18.2$ million to deliver parts next year. Payment is certain and occurs at the end of the year.

The $\$ /$ § exchange rate is currently $\mathrm{S}_{\$ / \mathrm{E}}=1.4794$.
How do fluctuations in exchange rates affect \$ revenues? How can you hedge this risk?
$\mathbf{S}_{\text {S/E }}$, Jan 1990 - Sept 2001

$\$$ revenues as a function of $\mathbf{S}_{\$ / \xi}$

Currency risk

Forwards

1 -year forward exchange rate $=1.4513$
Lock in revenues of $18.2 \times 1.4513=\$ 26.4$ million

Put options*

$$
S=1.4794, \sigma=8.3 \%, T=1, r=-1.8 \% *
$$

Strike price	Min. revenue	Option price	Total cost $(\times 18.2 \mathrm{M})$
1.35	$\$ 24.6 \mathrm{M}$	$\$ 0.012$	$\$ 221,859$
1.40	$\$ 25.5 \mathrm{M}$	$\$ 0.026$	$\$ 470,112$
1.45	$\$ 26.4 \mathrm{M}$	$\$ 0.047$	$\$ 862,771$

*Black-Scholes is only an approximation for currencies; $r=r_{U K}-r_{U S}$

$\$$ revenues as a function of $\mathbf{s}_{\$ / \neq}$

Convertible bonds

Your firm is thinking about issuing 10-year convertible bonds. In the past, the firm has issued straight (non-convertible) debt, which currently has a yield of 8.2%.

The new bonds have a face value of $\$ 1,000$ and will be convertible into 20 shares of stocks. How much are the bonds worth if they pay the same interest rate as straight debt?

Today's stock price is $\$ 32$. The firm does not pay dividends, and you estimate that the standard deviation of returns is 35% annually. Long-term interest rates are 6\%.

Payoff of convertible bonds

Convertible bonds

Suppose the bonds have a coupon rate of 8.2\%. How much would they be worth?

Cashflows*

Year	1	2	3	4	\ldots	10
Cash	$\$ 82$	$\$ 82$	$\$ 82$	$\$ 82$		$\$ 1,082$

Value if straight debt: $\$ 1,000$
Value if convertible debt: $\$ 1,000+$ value of call option

* Annual payments, for simplicity

Convertible bonds

Call option

$$
\begin{aligned}
& X=\$ 50, S=\$ 32, \sigma=35 \%, r=6 \%, T=10 \\
& \text { Black-Scholes value }=\$ 10.31
\end{aligned}
$$

Convertible bond

Option value per bond $=20 \times 10.31=\$ 206.2$
Total bond value $=1,000+206.2=\$ 1,206.2$
Yield $=5.47 \%{ }^{*}$
*Yield $=I R R$ ignoring option value

