

15.414

Today

Options

- Option pricing
- Applications: Currency risk and convertible bonds

Reading

• Brealey and Myers, Chapter 20, 21

Class 20

Options

Gives the holder the right to either buy (call option) or sell (put option) at a specified price.

- > Exercise, or strike, price
- Expiration or maturity date
- > American vs. European option
- > In-the-money, at-the-money, or out-of-the-money

Option payoffs (strike = \$50)

15.414

Valuation

Option pricing

How can we estimate the expected cashflows, and what is the appropriate discount rate?

Two formulas

- > Put-call parity
- > Black-Scholes formula*

* Fischer Black and Myron Scholes

15.414

Put-call parity

Relation between put and call prices

P + S = C + PV(X)

S = stock price P = put price C = call price X = strike price PV(X) = present value of $X = X / (1+r)^{t}$ r = riskfree rate

Option strategies: Stock + put

Option strategies: Tbill + call

Example

On Thursday, Cisco call options with a strike price of \$20 and an expiration date in October sold for \$0.30. The current price of Cisco is \$17.83. How much should put options with the same strike price and expiration date sell for?

Put-call parity

P = C + PV(X) - S

C = \$0.30, S = \$17.83, X = \$20.00

r = 1% annually $\rightarrow 0.15\%$ over the life of the option

Put option = 0.30 + 20 / 1.0015 - 17.83 = \$2.44

Black-Scholes

Price of a call option

$$\mathbf{C} = \mathbf{S} \times \mathbf{N}(\mathbf{d}_1) - \mathbf{X} \, \mathbf{e}^{-\mathbf{r}\mathsf{T}} \, \mathbf{N}(\mathbf{d}_2)$$

- S = stock price
- X = strike price
- r = riskfree rate (annual, continuously compounded)

T = time-to-maturity of the option, in years $d_{1} = \frac{\ln(S/X) + (r + \sigma^{2}/2) T}{\sigma\sqrt{T}}$ $d_{2} = d_{1} - \sigma\sqrt{T}$

 $N(\cdot)$ = prob that a standard normal variable is less than d_1 or d_2

 σ = annual standard deviation of the stock return

Cumulative Normal Distribution

Example

The CBOE trades Cisco call options. The options have a strike price of \$20 and expire in 2 months. If Cisco's stock price is \$17.83, how much are the options worth? What happens if the stock goes up to \$19.00? 20.00?

Black-Scholes

S = 17.83, X = 20.00, r = 1.00, T = 2/12,
$$\sigma_{2003}$$
 = 36.1%

$$d_{1} = \frac{\ln(S/X) + (r + \sigma^{2}/2)T}{\sigma\sqrt{T}} = -0.694$$

$$d_2 = d_1 - \sigma \sqrt{T} = -0.842$$

Call price = $S \times N(d_1) - X e^{-rT} N(d_2) =$ **\$0.35**

Cisco returns, **1993 – 2003**

Class 20

Cisco option prices

Class 20

Class 20

Option pricing

Factors affecting option prices

	Call option	Put option
Stock price (S)	+	_
Exercise price (X)	—	+
Time-to-maturity (T)	+	+
Stock volatility (σ)	+	+
Interest rate (r)	+	—
Dividends (D)	—	+

Example 2

Call option with X = \$25, r = 3%

Time to expire	Stock price	Std. deviation	Call option
	\$18	30%	\$0.02
T = 0.25	25	30	1.58
	32	30	7.26
	18	50	0.25
	25	50	2.57
	32	50	7.75
T = 0.50	18	30	0.14
	25	30	2.29
	32	30	7.68
	18	50	0.76
	25	50	3.67
	32	50	8.68

Option pricing

Class 20

Class 20

Using Black-Scholes

Applications

- > Hedging currency risk
- > Pricing convertible debt

Currency risk

Your company, headquartered in the U.S., supplies auto parts to Jaguar PLC in Britain. You have just signed a contract worth \pounds 18.2 million to deliver parts next year. Payment is certain and occurs at the end of the year.

The \$ / £ exchange rate is currently $s_{s/f} = 1.4794$.

How do fluctuations in exchange rates affect \$ revenues? How can you hedge this risk?

$\$ revenues as a function of $s_{\$

Currency risk

Forwards

1-year forward exchange rate = 1.4513

Lock in revenues of $18.2 \times 1.4513 = 26.4 million

Put options*

Strike price	Min. revenue	Option price	Total cost (×18.2 M)
1.35	\$24.6 M	\$0.012	\$221,859
1.40	\$25.5 M	\$0.026	\$470,112
1.45	\$26.4 M	\$0.047	\$862,771

*Black-Scholes is only an approximation for currencies; $r = r_{UK} - r_{US}$

\$ revenues as a function of $s_{s/E}$

Convertible bonds

Your firm is thinking about issuing 10-year convertible bonds. In the past, the firm has issued straight (non-convertible) debt, which currently has a yield of 8.2%.

The new bonds have a face value of \$1,000 and will be convertible into 20 shares of stocks. How much are the bonds worth if they pay the same interest rate as straight debt?

Today's stock price is \$32. The firm does not pay dividends, and you estimate that the standard deviation of returns is 35% annually. Long-term interest rates are 6%.

Payoff of convertible bonds

Convertible bonds

Suppose the bonds have a coupon rate of 8.2%. How much would they be worth?

Cashflows*

Year	1	2	3	4	10
Cash	\$82	\$82	\$82	\$82	\$1,082

Value if straight debt: \$1,000

Value if convertible debt: \$1,000 + value of call option

* Annual payments, for simplicity

Convertible bonds

Call option

X =\$50, S =\$32, $\sigma =$ 35%, r =6%, T =10

Black-Scholes value = \$10.31

Convertible bond

Option value per bond = $20 \times 10.31 = 206.2

Total bond value = 1,000 + 206.2 = \$1,206.2

Yield = 5.47%*

*Yield = IRR ignoring option value