15.063: Communicating with Data Summer 2003

Recitation 5
Simulation

Today's Content

Simulation

Crystal Ball

Problems

Simulation

Why?
What?
Pros?
Cons?

Crystal Ball

\} Simulation package
Inputs are RV: assumptions
Functions of assumptions are forecasts
Output:

statistics of forecasts after randomly
generating values for the assumptions

Crystal Ball

Problem

define random variables
define function f of random variables
obtain theoretical results for f if possible.

Crystal Ball

 define assumption construct forecast fobtain statistical data for f after simulation.

Exercise 3.11

See example 3.11 in the course textbook:

Data, Models, and Decisions: The Fundamentals of Management Science by Dimitris Bertsimas and Robert M. Freund, Southwestern College Publishing, 2000.

Ski J acket Production

The problem is to decide how many ski jackets to produce given an uncertain level of demand in order to maximize profit

Quantity to produce, Q

Random
demand, D

SkiJ acket

\} Want to: select Q that maximizes profit

Since demand D is unknown (RV), pick Q
that maximizes the expected profit

The problem is: $\max _{\mathrm{Q}} \mathrm{E}[\operatorname{Profit}(\mathrm{Q}, \mathrm{D})]$

SkiJ acket Production

Costs:
Variable prod. cost per unit (C): \$100
Selling price per unit (S):
\$125
Salvage value per unit (V):
\$27.50
Fixed production cost (F):
\$100,000
\} Let Q denote the quantity of ski jackets to produce (decision variable).

SkiJ acket

Managers have estimated the demand for ski jackets to be normally distributed with:
mean $\mu=12000$
standard deviation $\sigma=2750$

SkiJ acket

What is the general formula for the profit given production Q and demand D ? Profit $(\mathrm{Q}, \mathrm{D})=$?

2 cases:
What happens if $\mathrm{D} \geq \mathrm{Q}$?
$\{$ What happens if $\mathrm{D}<\mathrm{Q}$?

SkiJ acket

General formula for the profit given production Q and demand D

Profit(Q,D)=

$$
= \begin{cases}125^{*} Q-100 * Q-100,000 & D \geq Q \\ 125^{*} D-100^{*} Q+27.5^{*}(Q-D)-100,000 & D<Q\end{cases}
$$

SkiJ acket

How do we solve $\max _{\mathrm{Q}} \mathrm{E}[\operatorname{Profit}(\mathrm{Q}, \mathrm{D})]$?
By simulation:
Choose Q
Simulate n random demands: D_{1}, \ldots, D_{n}
Compute profits Profit(Q, D_{1}), $\ldots, \operatorname{Profit}\left(Q, D_{n}\right)$
Estimate expected profit E[Profit $(Q, D)]=$
$\left\{\operatorname{Profit}\left(Q, D_{1}\right)+\ldots+\operatorname{Profit}\left(Q, D_{n}\right)\right\} / n$
Repeat process with another value of Q

SkiJ acket

Look at worksheet page 'ski'
We have done simulations for 16 different values of Q. 1000, 2000, ...,16000.
From these values we analyze the means, and the standard deviation.

SkiJ acket

Estimates for Profit(Q) from Simulations		
Each simulation 10000 trials		
Cuantity (Q)	Mean	Std. Dev.
1000	$-75,000$	0
2000	$-50,000$	0
3000	$-25,053$	2,450
4000	-123	3,450
5000	24,636	7,257
6000	48,589	15,428
7000	71,013	27,836
8000	91,324	41,675
9000	106,164	65,709
10000	113,184	90,175
11000	108,484	125,305
12000	93,303	156,233
13000	61,994	188,339
14000	16,131	217,111
15000	$-38,050$	237,658
16000	$-99,317$	249,653

SkiJ acket

From this data we conclude that the
optimal Q is around 10000

SkiJ acket

15.063, Summer '03

SkiJ acket

To further analyze our solution it is wise to study the distribution of our suggested answer.

We observe for $\mathrm{Q}=10000$ that with probability greater than 80\% we have a profit higher than $\$ 115,451$.

Percentile	Profit
0%	$(\$ 773,879)$
10%	$(\$ 1,247)$
20%	$\$ 115,451$
30%	$\$ 150,000$
40%	$\$ 150,000$
50%	$\$ 150,000$
60%	$\$ 150,000$
70%	$\$ 150,000$
80%	$\$ 150,000$
90%	$\$ 150,000$
100%	$\$ 150,000$

The End.

