15.063 Communicating with Data Summer 2003

Solutions to Homework Assignment \#2

Issued: Lecture 7. Due: Lecture 11, before Lecture.
The Exercises are from the book, Data, Models, and Decisions: The Fundamentals of Management Science by Dimitris Bertsimas and Robert M. Freund, Southwestern College Publishing, 2000.

Problem 2.22: Selling Umbrellas

Solution:

Let U 1 be the umbrellas sold at the department store, U 2 be the umbrellas sold at the outlet, and S be the total sales revenue. Then, S = $17 \mathrm{U} 1+9 \mathrm{U} 2$. The expectation can be computed as:
$E(S)=17 \times 147.8+9 \times 63.2=\$ 3,081$,
and the variance as

$$
\begin{aligned}
\operatorname{VAR}(\mathrm{S}) & =289 \operatorname{VAR}(\mathrm{U} 1)+81 \operatorname{VAR}(\mathrm{U} 2)+2 \times 17 \times 9 \times 51 \times 37 \times \operatorname{Corr}(\mathrm{U} 1, \mathrm{U} 2) \\
& =1,266,773,
\end{aligned}
$$

from where the standard deviation is $\sigma(\mathrm{S})=\$ 1,125.51$.

Problem 2.25: Defective Microchips

Solution:

Let A denote the event "the inspector accepts the microchip" and D denote the event "the microchip is defective".
(a) We note that "the number of chips that are not defective" is a binomial distribution with $\mathrm{n}=10$ and $\mathrm{p}=0.95$. Then the desired answer is $(0.95)^{10}=0.6$.
(b) Drawing a decision tree or a probability table (as you prefer), we can derive that $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A} \mid \mathrm{D}) \mathrm{P}(\mathrm{D})+\mathrm{P}(\mathrm{A} \mid$ not D$) \mathrm{P}($ not D$)=0.1 \times 0.05+1 \times 0.95=0.955$.
(c) As in part (a), "the number of accepted chips" is binomial with $\mathrm{n}=10$ and $\mathrm{p}=0.955$. Then, $\mathrm{p}($ Accepts 9 out of 10$)=10 \times(0.955)^{9} \times 0.045=0.2973$.
(d) Using conditional probabilities, we derive that $\mathrm{P}(\operatorname{not} \mathrm{D} \mid \mathrm{A})=0.95 / 0.955=0.995$.
(e) Now, we use conditional probabilities again: $\mathrm{p}($ no defects $10 \mid$ accepts 10$)=$

$$
\begin{aligned}
& =p(\text { no defects } 10 \text { and accepts } 10) / \mathrm{p}(\text { accepts } 10) \\
& =\mathrm{p}(\text { accepts } 10 \mid \text { no defects } 10) \times \mathrm{p}(\text { no defects } 10) / \mathrm{p}(\text { accepts } 10) \\
& \left.=(0.995)^{10} \quad \text { (because } \mathrm{p}(\text { accepts } 10 \mid \text { no defects } 10)=1\right) \\
& =0.95 .
\end{aligned}
$$

Problem 2.27: Overbooking Flights

Solution:

Let X be the number of persons (out of 11) who show up. X is binomial with parameters $\mathrm{n}=11$ and $\mathrm{p}=0.8$.
(a) Using the binomial distribution, $\mathrm{P}(\mathrm{X}<=5)=0.012$.
(b) $\mathrm{P}(\mathrm{X}=10)=11 \times(0.8)^{10} \times 0.2=0.236$.
(c) $\mathrm{E}(\mathrm{X})=11 \times 0.8=8.8$.

E (Profit) $=1200 \mathrm{E}(\mathrm{X})-3000 \mathrm{p}(\mathrm{X}=11)=\$ 10,302$.
To arrive to this answer you could have done a decision tree or a table with the profits and probabilities as well.
(d) Again, we have a binomial but now $\mathrm{n}=10$. Then the expectation is $1200 \times 0.8 \times 10=\$ 9,600$.
(e) Yes, because if one person shows up, then it is very likely that his/her companions will also show up. Therefore, the event a person shows up is not independent of the event the next person shows up.

Problem 3.8: Pension Funds

Solution:

Let $\mathrm{T}=0.3 \mathrm{X}+0.7 \mathrm{Y}$ denote the total annual return.
(a) $\mathrm{E}(\mathrm{T})=\mathrm{E}(0.3 \mathrm{X}+0.7 \mathrm{Y})=0.3 \times 7+0.7 \times 13=11.2 \%$.
(b) $\operatorname{VAR}(\mathrm{T})=\operatorname{VAR}(0.3 \mathrm{X}+0.7 \mathrm{Y})=0.3^{2} \times 2^{2}+0.7^{2} \times 8^{2}-2 \times 0.3 \times 0.7 \times 2 \times 8 \times 0.4$

$$
=29.03
$$

$S D(T)=\sqrt{ }(29.03)=5.4 \%$.
(c) T has a normal distribution (because it is the sum of two normals) with mean $\mu=$ 11.2% and standard deviation $\sigma=5.4 \%$.
(d) Can be done using the normal distribution table or Excel:

$$
\begin{aligned}
\mathrm{P}(10<\mathrm{T}<15) & =\mathrm{P}(-0.22<\mathrm{Z}<0.70) \\
& =\mathrm{F}(0.70)-\mathrm{F}(-0.22) \\
& =0.7580-0.4129 \\
& =0.3451 .
\end{aligned}
$$

Problem 3.11: MBA salaries

Solution:

Let A and B denote the initial salary and the bonus, respectively.
(a) The compensation the first year is the salary plus the bonus. Then $\mathrm{E}(\mathrm{A}+\mathrm{B})=\mathrm{E}(\mathrm{A})+\mathrm{E}(\mathrm{B})=\$ 90,000+\$ 25,000=\$ 115,000$.
(b) $\operatorname{VAR}(A+B)=20000^{2}+5000^{2}=425,000,000$ and $\operatorname{SD}(A+B)=\$ 20,616$.
(c) The compensation the second year is the salary with a 20% increase plus the bonus. Then, $\mathrm{E}(1.2 \mathrm{~A}+\mathrm{B})=1.2 \times \$ 90,000)+\$ 25,000=\$ 133,000$.
(d) $\operatorname{VAR}(1.2 A+B)=(1.2)^{2} \times 20000^{2}+5000^{2}=601,000,000$ and SD $(1.2$ A $+B)=\$ 24,515$.
(e) As A and B are normal, we know that the compensation the second year is normal too. Then,

$$
\mathrm{p}(1.2 \mathrm{~A}+\mathrm{B}>\$ 140,000)=\mathrm{p}(\mathrm{Z}>0.29)=1-\mathrm{P}(\mathrm{Z}<0.29)=1-0.6141=0.3859 .
$$

Problem 3.20: Painting Cars

Solution:

(a) $\mathrm{p}($ Car returned $)=1-\mathrm{P}(\mathrm{Car}$ is not defective $)=1-0.80 \times 0.90=0.28$ (A car is not defective if both processes went OK. Note that the two processes are independent).
(b) Let N denote the number of cars returned for rework. As N is a binomial RV, $E(N)=1000 \times 0.28=280$ and $\mathrm{SD}(\mathrm{N})=\sqrt{ }(1000 \times 0.28 \times 0.72)=14.2$.
(c) Noticing that np>5 and $n(1-p)>5$, we can use the normal approximation to binomials. Then, $\mathrm{P}(\mathrm{N}<=200) \approx \mathrm{P}(\mathrm{Z}<-5.63)=0$.
(d) X has a binomial distribution with parameters $\mathrm{n}=1000$ and $\mathrm{p}=0.20$. Y has a binomial distribution with parameters $n=1000$ and $p=0.10$.
(e) As X and Y can be approximated by normals and the sum of normals is normal, $\mathrm{X}+\mathrm{Y}$ can be approximated by a normal random variable with parameters
$\mu=1000 \times 0.20+1000 \times 0.10=300$ and standard deviation
$\sigma=\sqrt{ }(1000 \times 0.2 \times 0.8+1000 \times 0.1 \times 0.9)=15.8$.
Using that $\mathrm{X}+\mathrm{Y}$ is approximately normal, we can now use the table to compute $\mathrm{P}(\mathrm{X}+\mathrm{Y}<=300) \approx \mathrm{P}(\mathrm{Z}<0)=0.5$.

