8.851 Homework 6

Iain Stewart, April 5, 2006

Problem 1) Renormalization of $c_F(\mu)$

Draw the diagrams needed to compute the anomalous dimension of the coefficient $c_F(\mu)$ which appears in the $\mathcal{O}(1/m_Q)$ magnetic moment HQET Lagrangian $\mathcal{L}_F^{(1)}$. Discuss whether the kinetic energy Lagrangian $\mathcal{L}_K^{(1)}$ mixes with $\mathcal{L}_F^{(1)}$ under renormalization. Argue that the anomalous dimension vanish in the abelian case (and therefore is proportional to the adjoint Casmir C_A) without computing any integrals. (Hint: think about Coulomb gauge.)

Problem 2) Heavy-to-Light Currents in HQET

Consider the $\mathcal{O}(1/m_Q)$ heavy-to-light vector currents

$$\begin{array}{rcl}
O_1 &=& \bar{q} \ \gamma^{\mu} i \not D Q_v \ , & O_4 = \bar{q} \ (-iv \cdot \overleftarrow{D}) \gamma^{\mu} Q_v \ , \\
O_2 &=& \bar{q} \ v^{\mu} i \not D Q_v \ , & O_5 = \bar{q} \ (-iv \cdot \overleftarrow{D}) v^{\mu} Q_v \ , \\
O_3 &=& \bar{q} \ i D^{\mu} Q_v \ , & O_6 = \bar{q} \ (-i\overleftarrow{D}^{\mu}) Q_v \ , \\
\end{array} \tag{1}$$

with coefficients B_1 to B_6 . Using reparameterization invariance determine which of these coefficients are fixed by the coefficients C_1 and C_2 of the leading order vector heavy-to-light currents $\bar{q}\gamma^{\mu}Q_v$ and $\bar{q}v^{\mu}Q_v$.

Problem 3) OPE for $B \to X_c e \bar{\nu}$

Use the results of Sec. 6.2 of your text to derive the λ_2 terms appearing in the double differential decay rate in Eq. (6.57). Explain why the λ_1 terms in Eq. (6.57) include one proportional to $\delta'(z)$ while the λ_2 terms do not. (You are not being asked to derive the λ_1 coefficients explicitly, just those for λ_2 .)