8.851 Homework 4

Iain Stewart,

March 7, 2006 (due March 15)

Problem 1) Chiral Perturbation Theory and Decay Constants

- a) Work out the tree level Feynman rules for the four meson interactions with SU(3) chiral perturbation theory and the leading order Lagrangian. (Use the octet basis $M = \pi^a \lambda^a / \sqrt{2}$ rather than the charged particle basis.)
- b) Work out the tree level Feynman rules in chiral perturbation theory for the left-handed SU(3) octet current $(\bar{\psi}\gamma^{\mu}P_L\lambda^a\psi)$ with one and three external mesons.
- c) Write down the loop diagrams and terms in the chiral Lagrangian that are needed to give the decays constants at order p^4 (where $p \sim m_{\pi} \sim m_K$ so this also means order $m_{\pi}^4 \sim m_g^2$ etc.).
- d) Determine the explicit contribution of the order p^4 Lagrangian terms to f_{π} and f_K taking $m_u = m_d = \hat{m}$, but $\hat{m} \neq m_s$.
- e) Calculate the loops in part c) using dimensional regularization. Combine your result with d) to derive the full expression for f_{π} and f_K/f_{π} at this order (still taking the isospin limit $m_u = m_d$).
- f) Extract a value for the relevant low energy contants, L_i , using the data $f_K/f_{\pi}=1.23\pm .02$, and discuss whether your result agrees with naive dimensional analysis.