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2: GENERAL ASPECTS 

Now that we have studied almost all known quantum field theories, we return to studying physical observables in 
these theories. We will start with the simplest object: 

⟨0| O(x)O(y) |0⟩ , (1) 

that is, the vacuum two-point function. It is also one of the most important objects. We will first describe its 
general structure based on symmetries, unitarity and analyticity, without the specifics of any particular theory. We 
will then consider an example in a specific theory. 

2.1: FIELD AND MASS RENORMALIZATIONS 

For illustration, consider a scalar field theory, with Lagrangian L (ϕ) which is Lorentz invariant and translation 
invariant. We examine 

GF (x, y) = ⟨0| T (ϕ(x)ϕ(y)) |0⟩ , the Feynman function, 

G+(x, y) = ⟨0| ϕ(x)ϕ(y) |0⟩ , the Wightman function, and 

GR(x, y) = �(x 0 − y 0) ⟨0| ϕ(x)ϕ(y) |0⟩ , the retarded Green’s function. 

Here, �(x0) is the heaviside function. Translation invariance implies that GF (x, y) = GF (x − y), and Lorentz 
invariance implies that GF (x − y) = GF ((x − y)2). In momentum space, we have that 

GF (x − y) = 
ˆ 

d4p
eip.(x−y)GF (p), (2) 

(2π)4 

and by Lorentz invariance, GF (p) depends only on p2 . Recall, in the free theory, 

L = − 
2

1 
∂µϕ∂

µϕ − 
2

1 
m0

2ϕ2 , (3) 

(0) 2 2 2and G+ (p; m0) = 2π�(p0)δ(p + m0). The delta function constrains the support of the Green’s function to the 
mass-shell, and the heaviside function constrains the support to the positive-energy sheet. 

GF (p; m0
2) = 

−i
. (4) 

p2 + m0
2 − iϵ 

Now, for a general interacting theory, ∑ 
G+(x, y) = ⟨0| ϕ(x) |n⟩ ⟨n| ϕ(y) |0⟩ , (5) 

n 

where we have just inserted a complete set of states, and where the summation heuristically also represents an 
integration over momentum. Now, 

p.xϕ(0)e p.x⟨0| ϕ(x) |n⟩ = ⟨0| e−iˆ iˆ |n⟩ 
=eipn.x ⟨0| ϕ(0) |n⟩ , 

and so, ∑ 
G+(x − y) = eipn.(x−y) |⟨0| ϕ(0) |n⟩| 2 

, (6) 
n 

1 



k
1

= -k
1

k
2
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or, more explicitly, 

G+(x − y) = 
ˆ 

(2

d

π

4p 
)4 
eip.(x−y)(2π)4 

∑ 
δ(4)(p − pn) |⟨0| ϕ(0) |n⟩| 2 

. (7) 
n 

We define (2π)�(p0)ρ(−p2) = (2π)4 ∑ 
δ(4)(p − pn ϕ(0) 2

, a Lorentz invariant scalar function of p, with n 
2 

) 
0 
|⟨0| |n⟩| 

2ρ(−p2) = 0 for p > 0, as all |n⟩ should have En = pn > 0, and so pn < 0. We thus find that 

G+(p) =2π�(p 0)ρ(−p 2) 

= 
ˆ � 

dµ2 2πδ(p 2 + µ 2)�(p 0)ρ(µ 2), 
0 

and so, for an interacting theory, we obtain the general result: 
ˆ � 

(0)
G+(p) = dµ2 ρ(µ 2)G+ (p; µ 2) 

0 
� 

(0) 2)G+(x − y) = 
ˆ 

dµ2 ρ(µ 2)G+ (x − y; µ 
0 

where ρ(µ2) is the spectral function. Now we consider the structure of ρ(−p2). We have that (2π)�(p0)ρ(−p2) = ∑ ∑ 
(2π)4 

n δ
(4)(p − pn) |⟨0| ϕ(0) |n⟩| 2, where n is a sum over all physical states: that is, a sum over single-particle 

states and multi-particle states. Firstly, ∑ ∑ ̂  
d3k⃗ 1 

= 
(2π)3 2ωk

single-particle states i 

= 
∑ ̂  

(2

d

π

4k 
)4 
2πδ(k2 + m 2 

i ), 
i √ 

where i indexes the particle species, and ωk = mi 
2 + ⃗k2 . Other than the mi 

2 , this sum is completely determined 

by Lorentz symmetry. Now, we consider the multi-particle states. For a given k⃗, a continuum of ω are allowed. For 
example, for a two-particle state at k⃗ = 0, 

Figure 1: A two particle-state with zero total momentum. 

√ √ 
ω = k1

2 + m2
1 + k2

2 + m2
2, (8) 

ω forms a continuum starting at m1 + m2, and so, k2 starts at −(m1 + m2)
2 . We thus find 

2 2
(2π)�(p 0)ρ(−p 2) = 

∑ ̂  

(2

d

π

4k 
)4 
2πδ(k2 + mi )�(k0)(2π)4δ(4)(p − k) |⟨0| ϕ(0) |k, i⟩| + 2π�(p 0)σ(−p 2) (9) 

i 

where the second term is the contribution from multi-particle states. Hence, we have that ∑ 
ρ(−p 2) = σ(−p 2) + δ(p 2 + m 2 

i )Zi (10) 
i 

with Zi = |⟨0| ϕ(0) |k, i⟩| 2 
a number which is independent of k, since k2 = −m2 

i . σ(−p2) is non-zero for −p2 ≥ 4m2
1, 

where m1 is the smallest single-particle mass. So, for the Feynman function, we have ∑ �−iZj 
ˆ

+ 
p2 + mj 

2 − iϵ 
dµ2 σ(µ 2) 

p2 + 
−
µ2 

i 
GF (p) = . (11)

− iϵ2
14mj 

It is convenient to introduce a function defined for a general complex parameter s, ∑ �−iZj 
ˆ

+2 
j 

dµ2 σ(µ 2) 
−i 

s − µ2
�(s) ≡ (12). 

s − m 2
14mj 

2 



m1
2
m2
2
4m

1

2 Re(s)

Im(s)

r
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Then GF (p
2) = �(s = −p2 + iϵ), and so, we obtain the Feynman function by approaching the real s−axis from 

above. We observe two features of �(s) : 

1.	 �(s) has poles at single-particle mass-squared values: s = mj 
2 . 

2.	 There is a branch cut beginning at 4m1
2 with a discontinuity �(r + iϵ) − �(r − iϵ) = 2πσ(r). 

Figure 2: The function �(s) plotted on the complex plane. 

Now, consider 

L = − 
1 
∂µϕ∂

µϕ − 
1 
m0

2ϕ2 + LI (ϕ, λ), (13)
2 2 

and suppose that as λ −→ 0, L −→ 0. At λ = 0, G(0)
(p) = −i . If ϕ does not have any bound states, then, F p2+m0

2−iϵ 

for λ = 0, we have ˆ̸	
−iZ � i 

GF (p) = + dµ2 σ(µ 2) .	 (14) 
p2 + m2 − iϵ 4m2 p2 + µ2 − iϵ 

In general, we note the following points: 

1.	 m2 = m0
2 : we have a mass renormalization. m0

2 , the bare mass which appears in the Lagrangian, is not ̸
2necessarily m , the physical mass which appears in the propagator. 

2
2.	 Z = 1: ̸ we have a field-strength renormalization. Z = |⟨0| ϕ(0) |k⟩| . These first two points are generic 

to interactions, and have nothing to do with ultraviolet divergences. 

3.	 ϕ(0) |0⟩ also generates multiple-particle states. 

2
4.	 We define ϕphys ≡

√
Zϕ, meaning |⟨0| ϕphys(0) |k⟩| = 1. 

3 
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