8.324 Relativistic Quantum Field Theory II

MIT OpenCourseWare Lecture Notes

Hong Liu, Fall 2010

Lecture 6

1.5: BRST SYMMETRY, PHYSICAL STATES AND UNITARITY

1.5.1: Becchi-Rouet-Stora-Tyutin (BRST) Symmetry

From the last lecture, we have

$$
\begin{equation*}
Z=\int \mathfrak{D} A_{\mu}^{a} \mathfrak{D} C_{a} D \bar{C}_{a} e^{i S_{e f f}\left[A_{\mu}^{a}, C, \bar{C}\right]} \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
S_{e f f}[A, C, \bar{C}]=S_{0}[A]-\frac{1}{2 \xi} \int d^{4} x f_{a}^{2}(A)+\int d^{4} x d^{4} y \bar{C}_{a}(x)\left[\left.\frac{\delta f_{a}\left(A_{\Lambda}(x)\right.}{\delta \Lambda_{b}(y)}\right|_{\Lambda=0}\right] C_{b}(y), \tag{2}
\end{equation*}
$$

where $f_{a}(A)$ is the gauge-fixing function and $S_{0}[A]=\frac{1}{4} F_{\mu \nu}^{a} F^{\mu \nu a}$ is the pure Yang-Mills action. $S_{0}[A]$ is invariant under the gauge transformation

$$
\begin{equation*}
A_{\mu}^{a} \longrightarrow A_{\mu}^{a}+D_{\mu} \Lambda^{a} \tag{3}
\end{equation*}
$$

where $D_{\mu} \Lambda^{a}=\partial_{\mu} \Lambda^{a}+f^{a b c} A_{\mu}^{b} \Lambda^{c}$. We note that in (1) we integrate over all $A_{\mu}^{a}(x)$, including the unphysical configurations, but by construction Z should only receive contributions from the physical $A_{\mu}^{a}(x)$. We also note that $Z=\langle 0,+\infty \mid 0,-\infty\rangle . S_{\text {eff }}[A, C, \bar{C}]$ no longer has gauge symmetries, but it has a hidden global fermionic symmetry, the BRST symmetry, which is, in fact, a remnant of the gauge symmetry. To see this, it is convenient to introduce an auxillary field $h_{a}(x)$:

$$
\begin{equation*}
Z=\int \mathfrak{D} A_{\mu}^{a} \mathfrak{D} h_{a} \mathfrak{D} C_{a} D \bar{C}_{a} e^{i S_{e f f}\left[A_{\mu}^{a}, C, \bar{C}, h\right]} \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
S_{e f f}[A, C, \bar{C}, h]=S_{0}[A]+\frac{\xi}{2} \int d^{4} x h_{a}^{2}+\int d^{4} x h_{a}(x) f_{a}(x)+\mathscr{L}_{g h} \tag{5}
\end{equation*}
$$

Now, consider the following (BRST) transformations:

$$
\begin{align*}
\delta_{B} A_{\mu}^{a} & =\eta\left(D_{\mu} C\right)^{a} \equiv \eta s\left(A_{\mu}^{a}\right) \tag{6}\\
\delta_{B} \bar{C}^{a} & =-\eta h^{a} \equiv \eta s\left(\bar{C}^{a}\right) \tag{7}\\
\delta_{B} C^{a} & =-\frac{1}{2} g \eta f^{a b c} C^{b} C^{c} \equiv \eta s\left(C^{a}\right) \tag{8}\\
\delta_{B} h^{a} & =0 \equiv \eta s\left(h^{a}\right) \tag{9}
\end{align*}
$$

with η an anticommuting constant parameter. Then, in general,

$$
\begin{equation*}
\delta_{B} \phi \equiv \eta s(\phi), \quad \phi=A_{\mu}^{a}, C^{a}, \bar{C}^{a}, h^{a} . \tag{10}
\end{equation*}
$$

$s(\phi)$ takes ϕ to a field of opposite 'fermionic parity'. We note some of the important properties of s : i.

$$
\begin{equation*}
s\left(\phi_{1} \phi_{2}\right)=s\left(\phi_{1}\right) \phi_{2} \pm \phi_{1} s\left(\phi_{2}\right) \tag{11}
\end{equation*}
$$

where the $+\operatorname{sign}$ is for ϕ_{1} bosonic, and the $-\operatorname{sign}$ is for ϕ_{1} fermionic.
ii.

$$
\begin{equation*}
s^{2}(\phi)=0 \tag{12}
\end{equation*}
$$

For example, $s^{2}\left(\bar{C}^{a}\right)=0$ and $s^{2}\left(C^{a}\right)=0$, which follows from the Jacobi identity.
iii. From (i) and (ii), we have that

$$
\begin{equation*}
s^{2}(F(\phi))=0 \tag{13}
\end{equation*}
$$

iv. $\quad s\left(A_{\mu}^{a}\right)$ is the same as the infinitesimal gauge transformation of A_{μ}^{a} with Λ^{a} replaced by C^{a}.

Based on the above properties, we will now prove that $\delta_{B} S=0$.
We first show that

$$
\begin{equation*}
S=S_{0}+\int d^{4} x s(F(x)) \tag{14}
\end{equation*}
$$

with $F(x)=-\bar{C}_{a} f_{a}-\frac{\xi}{2} \bar{C}_{a} h_{a}$, so that

$$
\begin{equation*}
s(F(x))=h_{a} f_{a}+\bar{C}_{a} s\left(f_{a}\left(A_{\mu}\right)\right)+\frac{\xi}{2} h_{a}^{2} \tag{15}
\end{equation*}
$$

This can be established by showing that

$$
\begin{equation*}
\int d^{4} x \bar{C}_{a}(x) s\left(f_{a}\left(A_{\mu}(x)\right)\right)=\int d^{4} y d^{4} x \bar{C}_{a}(x)\left[\left.\frac{\delta f_{a}\left(A_{\Lambda}(x)\right.}{\delta \Lambda_{b}(y)}\right|_{\Lambda=0}\right] C_{b}(y) \tag{16}
\end{equation*}
$$

which is left as an exercise to the reader. Then, we have that

$$
\begin{equation*}
\delta_{B} S=\delta_{B} S_{0}+\eta \int d^{4} x s^{2}(F(x)) \tag{17}
\end{equation*}
$$

and these terms are separately zero by the properties (iii) and (iv) shown above.

The BRST symmetry implies the existence of a conserved fermionic charge Q_{B}.

$$
\begin{equation*}
\delta_{B} \phi=i\left[\eta Q_{B}, \phi\right]=\eta s(\phi) \tag{18}
\end{equation*}
$$

or, equivalently,

$$
\begin{aligned}
s(\phi) & =i\left[Q_{B, \phi}\right]_{ \pm} \\
& = \begin{cases}i\left[Q_{B}, \phi\right], & \phi \text { bosonic } \\
i\left\{Q_{B}, \phi\right\}, & \phi \text { fermionic. }\end{cases}
\end{aligned}
$$

Since $s^{2}(\phi)=0$, we have that

$$
\begin{equation*}
\left[Q_{B},\left[Q_{B}, \phi\right]_{ \pm}\right]_{\mp}=0 \tag{19}
\end{equation*}
$$

That is, $\left[Q_{B}^{2}, \phi\right]=0$ for any ϕ, and hence,

$$
\begin{equation*}
Q_{B}^{2}=0 \tag{20}
\end{equation*}
$$

We can also define a ghost number, which is conserved:

$$
\begin{equation*}
\operatorname{gh}[C]=1, \operatorname{gh}[\bar{C}]=-1, \operatorname{gh}\left[Q_{B}\right]=1, \operatorname{gh}[\tilde{\phi}]=0 \tag{21}
\end{equation*}
$$

for any other field $\tilde{\phi}$.

1.5.2: Physical States and Unitarity

Physical states should be independent of the gauge choice. $Z=\langle 0,+\infty \mid 0,-\infty\rangle$ is so by construction, as it should be independent of $f_{a}(A)$. We now consider more general observables. More generally, we should have that

$$
\begin{equation*}
0=\delta_{g}\langle f \mid i\rangle=i\langle f| \delta_{g} S|i\rangle \tag{22}
\end{equation*}
$$

where δ_{g} represents the change under the variation of the gauge-fixing condition $f_{a}(A)$. Note from (14) we have that

$$
\begin{aligned}
\delta_{g} S & =\int d^{4} x s\left(\delta_{g} F(x)\right) \\
& =-\int d^{4} x s\left(\bar{C}_{a} \delta f_{a}\right) \\
& =-i \int d^{4} x\left\{Q_{B}, \bar{C}_{a} \delta f_{a}(A)\right\},
\end{aligned}
$$

and so it must be true that

$$
\begin{equation*}
\int d^{4} x\langle f|\left\{Q_{B}, \bar{C}_{a} \delta f_{a}(A)\right\}|i\rangle=0 \tag{23}
\end{equation*}
$$

for arbitrary $\delta f_{a}(A)$ for a physical observable, and so

$$
\begin{equation*}
Q_{B}|i\rangle=Q_{B}|f\rangle=0 \tag{24}
\end{equation*}
$$

That is, a physical state $|\psi\rangle$ should satisfy

$$
\begin{equation*}
Q_{B}|\psi\rangle=0 \tag{25}
\end{equation*}
$$

Similarly, by considering

$$
\begin{equation*}
\delta_{g}\langle f| O_{1} \ldots O_{n}|i\rangle=0 \tag{26}
\end{equation*}
$$

we find that

$$
\begin{equation*}
\left[Q_{B}, O\right]=0 \tag{27}
\end{equation*}
$$

and so O should be gauge invariant (if it does not contain ghost fields). Note that any state of the form

$$
\begin{equation*}
|\psi\rangle=Q_{B}|\ldots\rangle \tag{28}
\end{equation*}
$$

satisfies $Q_{B}|\psi\rangle=0$, but that in this case, $\langle\chi \mid \psi\rangle=0$ for any physical state $|\chi\rangle$. Such a state $|\psi\rangle$ is called a null state. All physical observables involving a null state vanish. If $\left|\psi^{\prime}\right\rangle,|\psi\rangle$ satisfying (25) are related by

$$
\begin{equation*}
\left|\psi^{\prime}\right\rangle=|\psi\rangle+Q_{B}|\ldots\rangle \tag{29}
\end{equation*}
$$

they will have the same inner product with all physical states, and thus are equivalent. We introduce

$$
\begin{aligned}
\mathscr{H}_{\text {closed }} & =\left\{|\psi\rangle: Q_{B}|\psi\rangle=0\right\} \\
\mathscr{H}_{\text {exact }} & =\left\{|\psi\rangle:|\psi\rangle=Q_{B}|\ldots\rangle\right\} \\
\mathscr{H}_{\text {phys }} & =\frac{\mathscr{H}_{\text {closed }}}{\mathscr{H}_{\text {exact }}}
\end{aligned}
$$

That is, $\mathscr{H}_{\text {phys }}$ is the cohomology of Q_{B}. In summary:

1. Defining $\mathscr{H}_{b i g}$ to be the Fock space composed from A_{μ}, C, \bar{C}, we have that

$$
\begin{equation*}
\mathscr{H}_{\text {phys }} \subset \mathscr{H}_{\text {closed }} \subset \mathscr{H}_{\text {big }} \tag{30}
\end{equation*}
$$

2. By restricting to $\mathscr{H}_{p h y s}$ and gauge invariant $O,\langle f| O_{1} \ldots O_{n}|i\rangle$ does not depend on the gauge choice.
3. Our path integral construction guarantees that only physical states contribute in the intermediate state.

Example 1: Quantum electrodynamics in Feynman gauge $(\xi=1)$

$$
\begin{aligned}
\mathscr{L} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2 \xi}\left(\partial_{\mu} A^{\mu}\right)^{2}+\partial_{\mu} C \partial^{\mu} \bar{C} \\
& =-\frac{1}{2}\left(\partial_{\mu} A_{\nu}\right)\left(\partial^{\mu} A^{\nu}\right)+\partial_{\mu} C \partial^{\mu} \bar{C}
\end{aligned}
$$

Under the BRST transformation:

$$
\begin{aligned}
\delta_{B} A_{\mu} & =\eta \partial_{\mu} C \\
\delta_{B} \bar{C} & =-\eta \partial_{\mu} A^{\mu} \\
\delta_{B} C & =0
\end{aligned}
$$

and so

$$
\begin{aligned}
{\left[Q_{B}, A_{\mu}\right] } & =-i \partial_{\mu} C \\
{\left[Q_{B}, \bar{C}\right] } & =i \partial_{\mu} A^{\mu} \\
{\left[Q_{B}, C\right] } & =0
\end{aligned}
$$

It is left as an exercise for the reader to find the explicit form for Q_{B}. Now, we set $\mathscr{H}_{b i g}$ to be the set of states formed by acting with creation operators for A_{μ}, \bar{C}, C on the ground state $|0\rangle$. Imposing $Q_{B}|\psi\rangle=0$ gives us $\mathscr{H}_{\text {closed }}$ and $\mathscr{H}_{\text {phys }}$. For illustration, consider the one-particle state:

$$
\begin{equation*}
\mathscr{H}_{b i g}=\left\{\left|e_{\mu}, p\right\rangle,|c, p\rangle,|\bar{c}, p\rangle\right\} . \tag{31}
\end{equation*}
$$

Then, $Q_{B}|e, p\rangle=Q_{B} e \cdot A|0\rangle=-e \cdot p|c, p\rangle$ from $\left[Q_{B}, A_{\mu}\right]=-i \partial_{\mu} C$, and we obtain the physical state condition:

$$
\begin{equation*}
e . p=0 \tag{32}
\end{equation*}
$$

For e.p $\neq 0$, we get $|c, p\rangle$ null states. $Q_{B}|\bar{c}, p\rangle \propto p_{\mu} A^{\mu}(p)|0\rangle \neq 0$, and so the $|\bar{c}, p\rangle$ are non-physical states, and $p_{\mu} A^{\mu}(p)|0\rangle=|e=p, p\rangle$ is a null state. So, we have that

$$
\begin{equation*}
\mathscr{H}_{p h y s}=\left\{|e, p\rangle: e . p=0, e^{\mu} \sim e^{\mu}+p^{\mu}\right\} \tag{33}
\end{equation*}
$$

Take $p^{\mu}=\left(p^{0}, 0,0, p^{3}\right), p^{2}=0$. Then, e. $p=0$ implies that $e^{\mu}=\left(p^{0}, e_{1}, e_{2}, p^{3}\right)$, and $e \sim e+p$ implies that $e^{\mu}=\left(0, e_{1}, e_{2}, 0\right)$, and so, only transverse components of A_{μ} generate physical states.

Remarks:

1. While $A_{0}|0\rangle$ creates negative-norm states, they do not lie in the physical state space (giving a positivedefinite norm on the physical state space).
2. Ghosts C, \bar{C} make sure that these negative norm states do not contribute in intermediate steps.

MIT OpenCourseWare
http://ocw.mit.edu

8.324 Relativistic Quantum Field Theory II

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

