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Lecture 6 

1.5: BRST SYMMETRY, PHYSICAL STATES AND UNITARITY 

1.5.1: Becchi-Rouet-Stora-Tyutin (BRST) Symmetry 

From the last lecture, we have 

iSef f [A
a ,C, C̄]Z = 

ˆ 
DAa

µDCaDC̄a e µ , (1) 

with [ ]
(A) is the gauge-fixing function and S0 [A] = 1 

under the gauge transformation 
Aa

µ −→ Aa + Dµ�
a (3) µ 

where Dµ�
a = ∂µ�a + fabcAµ

b �c . We note that in (1) we integrate over all Aa
µ(x), including the unphysical 

][ 1 
ˆ ˆ
d4x fa 

2(A) + 
2ξ 

δfa(A�(x)
A, C, C̄ d4xd4 y C̄aSeff = S0 [A] − (x) Cb(y), (2) 

δ�b(y) �=0

F a 
µ� F µ�a is the pure Yang-Mills action. S0 [A] is invariant where fa 4 

configurations, but by construction Z should only receive contributions from the physical Aa 

A, C, C̄
(x). We also note µ

that Z = Seff⟨0, +∞| 0, −∞⟩. 
symmetry, the BRST symmetry, which is, in fact, a remnant of the gauge symmetry. To see this, it is convenient 

]
(x) : 

[
no longer has gauge symmetries, but it has a hidden global fermionic 

to introduce an auxillary field ha

iSef f [A
a ,C, ¯Z = 

ˆ 
DAa

µDhaDCaDC̄a e µ C,h] (4) 

with ][
A, C, C̄, h

Now, consider the following (BRST) transformations: 

ξ 
ˆ ˆ
d4xh2 + 

2 a d4xha(x)fa(x) + Lgh. (5) Seff = S0 [A] + 

δB A
a 
µ = η(DµC)

a ≡ ηs(Aa 
µ) 

δB C̄
a = − ηha ≡ ηs( C̄a) 

δB C
a = − 

1 
2 
gηfabcCbCc ≡ ηs(Ca) 

δB h
a = 0 ≡ ηs(ha) 

(6) 

(7) 

(8) 

(9) 

with η an anticommuting constant parameter. Then, in general, 

δBϕ ≡ ηs(ϕ), ϕ = Aa 
µ, C

a , C̄a, ha . (10) 

s(ϕ) takes ϕ to a field of opposite ’fermionic parity’. We note some of the important properties of s : 

i. 

ii. 

s(ϕ1ϕ2) = s(ϕ1)ϕ2 ± ϕ1s(ϕ2), 

where the + sign is for ϕ1 bosonic, and the − sign is for ϕ1 fermionic. 

s 2(ϕ) = 0. 

For example, s2( C̄a) = 0 and s2(Ca) = 0, which follows from the Jacobi identity. 

(11) 

(12) 
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iii. From (i) and (ii), we have that 
s 2(F (ϕ)) = 0. (13) 

iv. s(Aa 
µ) is the same as the infinitesimal gauge transformation of Aa 

µ with �a 

Based on the above properties, we will now prove that δBS = 0. 

replaced by Ca . 

We first show that 

S = S0 + 
ˆ 
d4 x s(F (x)) 

with F (x) = − C̄afa − � 
2 C̄aha, so that 

s(F (x)) = hafa + C̄as(fa(Aµ)) + 
ξ 
2 
h2 
a. 

(14) 

(15) 

This can be established by showing that 
ˆ ˆ
d4 x C̄a(x)s(fa(Aµ(x))) = d4yd4 x C̄a(x)

[
δfa(A�(x) 
δ�b(y) �=0

]
Cb(y), (16) 

which is left as an exercise to the reader. Then, we have that 
ˆ

δB S = δB S0 + η d4 x s 2(F (x)), (17) 

and these terms are separately zero by the properties (iii) and (iv) shown above. 

The BRST symmetry implies the existence of a conserved fermionic charge QB . 

δB ϕ = i [ηQB , ϕ] = ηs(ϕ) (18) 

or, equivalently, 

s(ϕ) =i [QB,ϕ]

=

{ ± 

i [QB , ϕ] , ϕ bosonic, 

i {QB , ϕ} , ϕ fermionic. 

Since s2(ϕ) = 0, we have that

That is,
[
Q2 

B , ϕ
]
= 0 for any ϕ, and hence, 

[
QB , [QB , ϕ]±

]
∓ 
= 0. (19) 

Q2 
B = 0. (20) 

We can also define a ghost number, which is conserved: 

gh [C] = 1, gh[C ¯ ] = −1, gh [QB ] = 1, gh[ϕ̃] = 0 (21) 

for any other field ϕ̃. 

1.5.2: Physical States and Unitarity 

Physical states should be independent of the gauge choice. Z = ⟨0, +∞| 0, −∞⟩ is so by construction, as it should 
be independent of fa(A). We now consider more general observables. More generally, we should have that 

0 = δg ⟨f | i⟩ = i ⟨f | δg S |i⟩ (22) 
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where δg represents the change under the variation of the gauge-fixing condition fa(A). Note from (14) we have 
that 

δg S = 
ˆ 
d4 x s(δgF (x)) 

= − 
ˆ 
d4 x s(C̄aδfa) 

¯= − i 
ˆ 
d4 x 

{
QB , Caδfa(A)

} 
, 

and so it must be true that ˆ { }
d4 x ⟨f | QB , C̄aδfa(A) |i⟩ = 0 (23) 

for arbitrary δfa(A) for a physical observable, and so 

QB |i⟩ = QB |f⟩ = 0. (24) 

That is, a physical state |ψ⟩ should satisfy 
QB |ψ⟩ = 0. (25) 

Similarly, by considering 
δg ⟨f | O1 . . . On |i⟩ = 0, (26) 

we find that 
[QB , O] = 0 (27) 

and so O should be gauge invariant (if it does not contain ghost fields). Note that any state of the form 

|ψ⟩ = QB |. . .⟩ (28) 

satisfies QB |ψ⟩ = 0, but that in this case, ⟨χ| ψ⟩ = 0 for any physical state |χ⟩ . Such a state |ψ⟩ is called a null 
state. All physical observables involving a null state vanish. If |ψ′⟩, |ψ⟩ satisfying (25) are related by 

|ψ′ ⟩ = |ψ⟩ + QB |. . .⟩ , (29) 

they will have the same inner product with all physical states, and thus are equivalent. We introduce 

Hclosed = {|ψ⟩ : QB |ψ⟩ = 0} , 

Hexact = {|ψ⟩ : |ψ⟩ = QB |. . .⟩} , 

Hclosed 
Hphys = . 

Hexact 

That is, Hphys is the cohomology of QB . In summary: 

1. Defining Hbig to be the Fock space composed from Aµ C, we have that , C, ¯

Hphys ⊂ Hclosed ⊂ Hbig. (30) 

2. By restricting to Hphys and gauge invariant O, ⟨f | O1 . . . On |i⟩ does not depend on the gauge choice. 

3. Our path integral construction guarantees that only physical states contribute in the intermediate state. 

Example 1: Quantum electrodynamics in Feynman gauge (ξ = 1) 

L = − 
4

1 
Fµ� F µ� − 

2

1 
ξ 
(∂µA

µ)2 + ∂µC∂
µC̄

= − 
1
(∂µA� )(∂

µA� ) + ∂µC∂
µC̄

2 
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Under the BRST transformation: 

δB Aµ =η∂µC 

δB C̄ = − η∂µA
µ 

δB C =0, 

and so 

[QB , Aµ] = − i∂µC [ ]
QB , C̄ =i∂µA

µ 

[QB , C] =0. 

It is left as an exercise for the reader to find the explicit form for QB . Now, we set Hbig to be the set of states formed 
¯by acting with creation operators for Aµ, C, C on the ground state |0⟩. Imposing QB |ψ⟩ = 0 gives us Hclosed and 

Hphys. For illustration, consider the one-particle state: 

Hbig = {|eµ, p⟩ , |c, p⟩ , |¯	 (31)c, p⟩} . 

Then, QB |e, p⟩ = QB e � A |0⟩ = −e � p |c, p⟩ from [QB , Aµ] = −i∂µC, and we obtain the physical state condition: 

e.p = 0 (32) 

For e.p ≠ 0, we get|c, p⟩ null states. |¯ Aµ(p) |0⟩ ≠ 0, and so the |c, p⟩ are non-physical states, and QB c, p⟩ ∝ pµ ¯
pµA

µ(p) |0⟩ = |e = p, p⟩ is a null state. So, we have that 

Hphys = {|e, p⟩ : e.p = 0, eµ ∼ eµ + pµ} . (33) 

Take pµ = 
(
p0 , 0, 0, p3

) 
, p2 = 0. Then, e.p = 0 implies that eµ = 

(
p0, e1, e2, p

3
)
, and e e + p implies that ∼ 

eµ = (0, e1, e2, 0), and so, only transverse components of Aµ generate physical states. 

Remarks: 

1.	 While A0 |0⟩ creates negative-norm states, they do not lie in the physical state space (giving a positive-
definite norm on the physical state space). 

2.	 Ghosts C, C̄ make sure that these negative norm states do not contribute in intermediate steps. 
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