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1.4: QUANTIZATION OF NON-ABELIAN GAUGE THEORIES 

1.4.1: Gauge Symmetries 

Gauge symmetry is not a true symmetry, but a reflection of the fact that a theory possesses redundant degrees 
of freedom. A gauge symmetry implies the existence of different field configurations which are equivalent. For 
example, in the case of U(1), 

ψ −� e iα(x)ψ, 

1 
Aµ −� Aµ + 

e
∂µα(x), 

the phase of ψ is not a physical degree of freedom. Similarly, nor is the longitudinal part of Aµ. A massless spin-1 
representation of the Lorentz group has only two polarizations. Aµ has four components. Thus to have a Lorentz 
covariant formulation, we require gauge symmetries to get rid of the extra degrees of freedom. 

gauge orbits

physically inequivalent

configurations

Figure 1: Equivalent gauge orbits in configuration space. 

When quantizing the theory, we should separate the redundant and physical degrees of freedom. We need to make 
sure only physical modes contribute to observables. This leads to complications in dealing with gauge theories. 
There are two general approaches: 

1.	 Isolate the physical degrees of freedom: fix a gauge and quantize the resulting constrained system. This 
method is used, for example, in axial gauge quantization in quantum electrodynamics. 

2.	 Retain the unphysical modes, or even introduce additional modes, but make sure that they do not 
contribute to any physical observables. This method is used, for example, in covariant path integral 
quantization. 

For the first complication in the path integral quantization, consider, for example, the path integral for a scalar 
field ˆ ´

Dϕ e− dd x 1 
2ϕ

T Kϕ+V (ϕ)−JT ϕ = e−V ( � )�J e 
1 
2

´ 
d4xJT K−1J , (1) 

where K is the kinetic operator (−∂2 + m2) and K−1 is the propagator for ϕ. For gauge theories, the inverse of K 
is not defined. For example, in quantum electrodynamics, 

Fµν F µν =(∂µAν − ∂ν Aµ)(∂
µAν − ∂ν Aµ) 

= AµK
µν Aν + total derivatives, 
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with Kµν = ∂2ηµν − ∂µ∂ν . We see that Kµν ∂ν α(x) = 0 for any α(x), and so the matrix is singular. These zero 
eigenmodes are the configuarations which are gauge-equivalent to 0. Non-Abelian gauge theories have the same 
quadratic kinetic terms as quantum electrodynamics. In order for K to have an inverse, we need to separate gauge 
orbits with physically inequivalent configurations. 

1.4.2 Fadeev-Popov method: 

Example 1: A trivial example 

φ

physically inequivalent

configurations

gauge orbits

Figure 2: The radial direction gives inequivalent configurations, and the circles of fixed radius are the gauge orbits. 

Consider ˆ
W = dxdy ef (x,y) (2) √ 

and suppose f(x, y) only depends on r = x2 + y2 . Then 
ˆ

W = drdϕ ref(r) 

ˆ
=2π dr ref(r), 

where the 2π is the factorized orbit volume. Equivalently, we can insert a delta function. More explicitly, we can 
insert a factor of 

´ 
dϕ0δ(ϕ − ϕ0) = 1. Then 

W = 
ˆ 
dϕ0 

ˆ 
dxdyef(x,y)δ(ϕ − ϕ0). (3) 

The 
´ 
dϕ0 integrates over the gauge orbit, and the other factor integrates over a section of non-gauge equivalent 

configurations. 

Example 2: Gauge theories 

We consider pure-gauge theories only; adding matter fields is trivial. 

ˆ dim G∏ 
Z = DAaµ(x) e 

iS[Aµ]. (4) 
a=1 

We define a set of gauge-fixing conditions: 

fa(A) = 0, a = 1, . . . , dim G, (5) 

in order to select a section of non-equivalent configurations: 
ˆ [ ]∏ δfa(A�(x))

1 = dΛa(x)δ(fa(A�)) det . (6) 
δΛb(y)a 

Here, the determinant is the determinant of both the color and function space. Inserting (6) into (4), using an 
abridged notation, ˆ ˆ [ ]

Z = dΛ DAeiS[A]δ(f(A�)) det 
δf(A�) 

. (7) 
δΛ 

2 



∣∣∣∣ 

∣∣∣∣ ��� 

∣∣∣∣ 

Lecture 5 8.324 Relativistic Quantum Field Theory II Fall 2010 

Now we observe that DA = DA�, as gauge transformations correspond to unitary transformations plus shifts, and 
that S [A] = S [A�], because of the defining gauge symmetry. Hence, 

Z = 
ˆ ˆ
dΛ DA�e 

iS[A�]δ(f(A�)) det
δf(A�) 
δΛ

= 
ˆ ˆ
dΛ DAeiS[A]δ(f(A)) det

[
[

δf(A) 
δΛ

]
, 

] 

as A� is a dummy integration variable. So, again we factor the partition function into the gauge volume 
´ 
dΛ and 

a path-integral over gauge-inequivalent configurations which is independent of Λ. We redefine this latter factor to 
be the new partition function; that is, 

Z � 
ˆ 

DAeiS[A]δ(f(A)) det

[
δf(A) 
δΛ

]
. (8) 

Example 3: Axial gauge 

From this, 

fa(A) = Aa 
z = 0. 

fa(A�) = Aa 
z + 

1 
g 
(∂z Λa + gfabcA

b 
zΛ

c), 

(9) 

(10) 

and hence, 
δfa(A�(x)) 
δΛb(x′) �=0 

1 
= ∂zδabδ(x − x′). (11) 
g 

We see that the Jacobian is independent of Aµ: its determinant only gives an overall constant in the partition 
function. Hence, 

Z = 
ˆ 

DAeiS[A] 
∏ 

δ(Aaz ) (12) 
a 

up to a constant. This is a particularly simple form. However, the drawback is that Lorentz covariance has been 
broken. In a general covariant gauge, both the determinant and delta-function factors are more difficult to work 
with. We need to employ additional tricks. 

(i) Determinant factor 

Recall that ˆ ∏ 
dΨdΨ̄e ψ̄aMabψb = det Mab, (13) 

a 

¯where the ψa and ψb are independent Grassman variables. Hence, the Fadeev-Popov determinant is given by 

det

[
δfa(A�(x)) 
δΛb(y) �=0

]
= 
ˆ ´

DCa(x)DC̄a(x) e 
i d4 xd4 y C̄a(x) 

�fa(A�(x)) 
Cb(y)��b(y) (14)�=0 , 

¯where Ca(x) and Ca(x), a = 1, . . . , dim G, are real fermionic fields with no spinor indices. These are the ghost fields. 

(ii) Delta-function factor 

Again, the method is to write this factor in the form of an exponential. Firstly, generalize 

δ(fa(A)) −� δ(fa(A) − Ba(x)) (15) 

where Ba(x) is an arbitrary function. This does not change the Fadeev-Popov determinant. Therefore, Z is 
independent of Ba(x), and so we can weight the integrand of Z with a Gaussian distribution of Ba(x). That is, 

Z = 
ˆ ∏ 

DBa(x)e
−i ́

 
d4 x 1 B2 (x)2� a × 

ˆ 
DAeiS[A]δ(f(A)) det

[
δf(A) 
δΛ �=0

]
. (16) 

a 
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Collecting (14) and (16), we find for Z, 
 

¯ ¯
Z = 

ˆ
DADC D C eiS ef f [A,C, C] 

a a (17) 

with the effective action Seff given by 

1 4 2 4 4 δf (A (x) 
  −   ¯ a �

Seff [A] = SYM [A] d x f  (A) + d xd y Ca(x)  Cb(y). (18) 
2ξ 

ˆ
a

ˆ [
δΛb(y) ∣∣∣∣

�=0

]
Example 4: Lorentz gauge 

f µ a
a(Aµ) = ∂ Aµ. (19) 

We have that (Aa) (x) = Aa 1 acd c d
µ � µ(x) +  (∂µΛa(x) + gf AµΛ ), and so the Jacobian is given by g

δfa(A�(x)) 
∣∣∣ 1  =

]∣  
[
∂µδ ∂ µ δ(4)ab µ + g cabAc (x −   y), (20) 

δΛb �=0 g

giving 
Leff = L [A] + Lgf + Lgh, (21) 

with 
1 

L µ a 4 ¯ µ
gf = − (∂ Aµ), Lgh = 

ˆ
d xCa(x)∂ DµCa(x), (22)

2ξ 

where DµCa(x) � ∂µCa(x) + gfabdAb 
µCd. From this, we can derive the Feynman rules for the theory. 
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