8.324 Relativistic Quantum Field Theory II

MIT OpenCourseWare Lecture Notes
Hong Liu, Fall 2010

Lecture 4

1.3.3: Field equations and conservation laws

We begin with the Lagrangian we considered in the last lecture:

$$
\begin{align*}
\mathscr{L} & =-\frac{c}{4} \operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}\right)-i \bar{\Psi}\left(\gamma^{\mu} D_{\mu}-m\right) \Psi \\
& =-\frac{c}{4} \operatorname{Tr}\left(F_{\mu \nu}^{a} F^{\mu \nu b} T^{a} T^{b}\right)-i \bar{\Psi}\left(\gamma^{\mu}\left(\partial_{\mu}-i g A_{\mu}^{a} T^{a}\right)-m\right) \Psi . \tag{1}
\end{align*}
$$

For the gauge group $S U(n)$, we can choose T^{a} such that $\operatorname{Tr}\left(T^{a} T^{b}\right)=\delta_{a b}$, and so $c=1$. We now obtain the equations of motion.
A. Varying A_{μ} :

$$
\begin{equation*}
\delta F_{\mu \nu}^{a}=\partial_{\mu} \delta A_{\nu}^{a}-\partial_{\nu} \delta A_{\mu}^{a}+g f_{b c}^{a}\left(\delta A_{\mu}^{b} A_{\nu}^{c}+A_{\mu}^{b} \delta A_{\nu}^{c}\right)=\left(D_{\mu} \delta A_{\nu}\right)^{a}-\left(D_{v} \delta A_{\mu}\right)^{a} \tag{2}
\end{equation*}
$$

where $\left(D_{\mu} \delta A_{\nu}\right)^{a} \equiv \partial_{\mu} \delta A_{\nu}^{a}+g f_{b c}^{a} A_{\mu}^{b} \delta A_{\nu}^{c}$. Now,

$$
\begin{equation*}
\delta \mathscr{L}=-\frac{1}{2} \delta F_{\mu \nu}^{a} F^{\mu \nu a}-g \bar{\Psi} \gamma^{\mu} T^{a} \Psi \delta A_{\mu}^{a} \tag{3}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left(D_{\mu} F^{\mu \nu}\right)^{a}=J^{\nu a}, \tag{4}
\end{equation*}
$$

where $\left(D_{\mu} F^{\mu \nu}\right)^{a} \equiv \partial_{\mu} F^{\mu \nu a}+g f_{b c}^{a} A_{\mu}^{b} F^{\mu \nu c}$, and $J^{\nu a} \equiv g \bar{\Psi} \gamma^{\nu} T^{a} \Psi$. Equation (4) can also be written as:

$$
\begin{equation*}
\partial_{\mu} F^{\mu \nu a}=j^{\nu a} \tag{5}
\end{equation*}
$$

with $j^{\nu a} \equiv g \bar{\Psi} \gamma^{\nu} T^{a} \Psi-g f_{b c}^{a} A_{\mu}^{b} F^{\mu \nu c}$.

B. Varying Ψ :

$$
\begin{equation*}
\left(\gamma^{\mu} D_{\mu}-m\right) \Psi=0 \tag{6}
\end{equation*}
$$

We note for emphasis that this is a matrix equation. Now, we recall that in quantum electrodynamics, $\partial_{\mu} F^{\mu \nu}=j^{\nu}$, with $j^{\nu} \equiv e \bar{\Psi} \gamma^{\nu} \Psi$ and $\partial_{\nu} j^{\nu}=0$, that is, j^{ν} is a conserved current. When $j=0, A_{\mu}$ is a free field, and we obtain free electromagnetic wave solutions.

Remarks:

1. In the non-Abelian case, the theory for A_{μ} remains interacting with $\Psi=0$. In quantum electrodynamics, A_{μ} is neutral, whereas, in the non-Abelian case, A_{μ}^{a} carries the group index, and so is charged under itself, leading to self-interaction.
2. In terms of $F_{\mu \nu}=F_{\mu \nu}^{a} T^{a}$ and $J^{\nu}=J^{\nu a} T^{a}$, we have from (4) that

$$
\begin{equation*}
D_{\mu} F^{\mu \nu}=J^{\nu} \tag{7}
\end{equation*}
$$

with $D_{\mu} F^{\mu \nu}=\partial_{\mu} F^{\mu \nu}-i g\left[A_{\mu}, F^{\mu \nu}\right]$, and under a gauge transformation,

$$
\begin{align*}
F_{\mu \nu} & \longrightarrow V F_{\mu \nu} V^{\dagger} \\
D_{\mu} F^{\mu \nu} & \longrightarrow V D_{\mu} F^{\mu \nu} V^{\dagger} \tag{8}
\end{align*}
$$

more generally, for any $X=X^{a} T^{a}$, which transforms as $X \longrightarrow V X V^{\dagger}, D_{\mu} X=\partial_{\mu} X-i g\left[A_{\mu}, X\right]$ transforms as $D_{\mu} X \longrightarrow V\left(D_{\mu} X\right) V^{\dagger}$. From (7), we have that

$$
\begin{equation*}
J^{\nu} \longrightarrow V J^{\nu} V^{\dagger} \tag{9}
\end{equation*}
$$

This will be checked directly in the problem sets.
3. \quad Acting with D_{ν} on (7),

$$
\begin{aligned}
D_{\nu} D_{\mu} F^{\mu \nu} & =\frac{1}{2}\left[D_{\nu}, D_{\mu}\right] F^{\mu \nu} \\
& =\frac{1}{2}\left[F_{\nu \mu}, F^{\mu \nu}\right]=0
\end{aligned}
$$

and so $D_{\nu} J^{\nu}=0$. This can also be checked directly from the equations of motion.
4. $\quad J^{\nu}$ is precisely the conserved Noether current for global $S U(n)$ symmetry in the absence of A_{μ}. For $A_{\mu} \neq 0, J^{\nu}$ is covariantly conserved. Of course, (1) is also invariant under global transformations

$$
\begin{equation*}
\Psi(x) \longrightarrow V \Psi(x), A_{\mu}(x) \longrightarrow V A_{\mu}(x) V^{\dagger} \tag{10}
\end{equation*}
$$

with V a position-independent $S U(n)$ matrix. The Noether current for this global symmetry is precisely j^{ν}, which was introduced in (5). From (5),

$$
\begin{equation*}
\partial_{\mu} j^{\mu}=0 \tag{11}
\end{equation*}
$$

Note that j^{ν} depends on A_{μ} non-trivially, which is true if and only if A_{μ}^{a} is charged. j^{ν} is not gauge invariant: it does not have good transformation properties.

1.3.4 Further generalizations

A representation of a Lie group G on a vector space V is a linear action

$$
\begin{equation*}
g \cdot v \in V \tag{12}
\end{equation*}
$$

for $g \in G, v \in V$, such that

$$
\begin{equation*}
g_{1} \cdot\left(g_{2} \cdot v\right)=\left(g_{1} \circ g_{2}\right) \cdot v \tag{13}
\end{equation*}
$$

where \circ is the group product. Here, V is the representation space.
A representation of a Lie algebra \mathfrak{g} on a vector space V is a linear action

$$
\begin{equation*}
x \cdot v \in V \tag{14}
\end{equation*}
$$

for $g \in G, v \in V$, such that

$$
\begin{equation*}
[x, y] \cdot v=x \cdot(y \cdot v)-y \cdot(x \cdot v) \tag{15}
\end{equation*}
$$

where [,] is defined using the group product. The concept of a representation is, again, tailor-made for physics. Here, V is the physical space, and the same abstract group can appear in different physical contexts, with different V (with different representations). We note that a representation for G induces a representation for \mathfrak{g}, and visa versa.

Example 1: Angular momentum, $S U(2)$

A spin- j representation is described by $(2 j+1) \times(2 j+1)$ matrices, acting on a $(2 j+1)$-dimensional V. For $S U(n)$, representing the group as $n \times n$ unitary matrices acting on n-dimensional complex vectors gives the fundamental representation. Here,

$$
\begin{equation*}
A_{\mu}=A_{\mu}^{a} T^{a} \in \mathfrak{g} \tag{16}
\end{equation*}
$$

with T^{a} in the fundamental representation. More generally, a representation r of \mathfrak{g} (or G) of dimension d_{r} is defined by $d_{r} \times d_{r}$ matrices $T_{a}^{(r)}$ that represent the generators, satisfying

$$
\begin{equation*}
\left[T_{a}^{(r)}, T_{b}^{(r)}\right]=i f_{a b}^{c} T_{c}^{(r)} \tag{17}
\end{equation*}
$$

One can prove that, for compact groups,

$$
\begin{equation*}
\operatorname{Tr}\left(T_{a}^{(r)} T_{b}^{(r)}\right)=C(r) \delta_{a b} \tag{18}
\end{equation*}
$$

where $C(r)$ is a positive number depending on the representation r. For non-compact groups, $\operatorname{Tr}\left(T_{a}^{(r)} T_{b}^{(r)}\right)$ is not positive-definite. Amongst all representations, there is a special one for all G (and \mathfrak{g}). The adjoint representation,
which is universal for all Lie groups and Lie algebras, has as its representation space the vector space for the Lie algebra itself. That is, $V=\mathfrak{g}(\operatorname{dim} V=\operatorname{dim} \mathfrak{g})$. The action of the Lie algebra is defined, for $x \in V=\mathfrak{g}, y \in \mathfrak{g}$, by

$$
\begin{equation*}
y \cdot x \equiv[y, x] \tag{19}
\end{equation*}
$$

We need to show that this rule satisfies (15), that is,

$$
\begin{equation*}
y_{1} \cdot\left(y_{2} \cdot x\right)-y_{2} \cdot\left(y_{1} \cdot x\right)=\left[y_{1}, y_{2}\right] \cdot x \tag{20}
\end{equation*}
$$

The left-hand side of this equation is $\left[y_{1},\left[y_{2}, x\right]\right]-\left[y_{2},\left[y_{1}, x\right]\right]$, and the right-hand side is $\left[\left[y_{1}, y_{2}\right], x\right]$. The equality of these follows from the Jacobi identity, which is an automatic consequence of the associativity of the group product, so (19) indeed gives a representation. For $S U(n)$, the $T_{a}^{(a d j)}$ are $\left(n^{2}-1\right) \times\left(n^{2}-1\right)$ matrices. Now we go back to the theory, and generalize as follows: we consider a general compact group G in place of $S U(n)$, with Ψ in the vector space of some representation r of $G . A_{\mu}=A_{\mu}^{a} T_{a}^{(r)} \in \mathfrak{g}$. Now we take

$$
\begin{equation*}
\mathscr{L}=-\frac{c}{4} \operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}\right)-i \bar{\Psi}\left(\gamma^{\mu} D_{\mu}-m\right) \Psi \tag{21}
\end{equation*}
$$

with $F_{\mu \nu} \equiv F_{\mu \nu}^{a} T_{a}^{(r)}, D_{\mu} \equiv \partial_{\mu}-i g A_{\mu}^{a} T_{a}^{(r)}$. Since $\operatorname{Tr}\left(T_{a}^{(r)} T_{b}^{(r)}\right)=C(r) \delta_{a b}$, to maintain canonical normalization, $c=\frac{1}{C(r)}$. Here, compactness of G is essential, as non-compactness leads to the wrong sign for kinetic terms of A_{μ}^{a}. Now, the action of the Lie group G on $V=\mathfrak{g}$ is given, for $g \in G, x \in \mathfrak{g}$, by

$$
\begin{equation*}
g \cdot x \equiv g \circ x \circ g^{-1} \tag{22}
\end{equation*}
$$

It is easy to check that this satisfies the group action product rule (13). For infinitesimal $g=1+i y, y \in \mathfrak{g}$, this action reduces to (19). In matrix form, for $x \in V=\mathfrak{g}, x=x^{b} T_{b}$ (the upper and lower indices can be distinct for this general treatment)

$$
\begin{equation*}
T_{a}^{(a d j)} \cdot x=\left[T_{a}, x\right]=\left[T_{a}, T_{b}\right] x^{b}=i f_{a b}^{c} T_{c} x^{b} \tag{23}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
T_{a}^{(a d j)} \cdot x=\left(T_{a}^{(a d j)} \cdot x\right)^{c} T_{c} \tag{24}
\end{equation*}
$$

where $\left(T_{a}^{(a d j)} x\right)^{c} \equiv\left(T_{a}^{(a d j)}\right)_{b}^{c} x^{b}$. Hence,

$$
\begin{equation*}
\left(T_{a}^{(a d j)}\right)_{b}^{c}=i f_{a b}^{c} \tag{25}
\end{equation*}
$$

Remarks:

1. Consider M^{a} in the adjoint representation, $a=1, \ldots, \operatorname{dim} \mathfrak{g}$;

$$
\begin{aligned}
\left(D_{\mu} M\right)^{a} & =\partial_{\mu} M^{a}-i g A_{\mu}^{a}\left(T_{b}^{(a d j)} \cdot M\right)^{a} \\
& =\partial_{\mu} M^{a}+g f_{b c}^{a} A_{\mu}^{b} M^{c},
\end{aligned}
$$

where the second line follows from (25). In matrix form, with $M=M^{a} T_{a}^{(r)}$ for any representation r,

$$
\begin{aligned}
D_{\mu} M & =\partial_{\mu} M-i g A_{\mu}^{a} T_{a}^{(a d j)} \cdot M \\
& =\partial_{\mu} M-i g A_{\mu}^{a} T^{(r)} \\
& =\partial_{\mu} M-i g\left[A_{\mu}, M\right]
\end{aligned}
$$

with $A_{\mu}=A_{\mu}^{a} T_{a}$.
2. Under a gauge transformation,

$$
\begin{aligned}
M & \longrightarrow V M V^{-1} \\
M^{a} T_{a} & \longrightarrow M^{a} V T_{a} V^{-1}
\end{aligned}
$$

and hence,

$$
\begin{equation*}
M^{a} \longrightarrow M^{a} D_{a}^{b} \tag{26}
\end{equation*}
$$

where $V T_{a} V^{-1} \equiv D_{a}^{b} T_{b}$.

MIT OpenCourseWare
http://ocw.mit.edu

8.324 Relativistic Quantum Field Theory II

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

