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Lecture 3 

We begin with some comments concerning gauge-symmetric theories: 

1.	 A U(1) local symmetry leads to the field Aµ(x), mediating interactions between the charge fields ψi(x). 

2.	 No mass term is allowed for Aµ or the gauge symmetry is broken. 

3.	 It is possible to construct theories using other gauge invariant terms, for example 

¯ϵµνλρFµν Fλρ, (Fµν F µν )2 , ψFµν γ
µγν ψ. (1) 

All of these terms can be written as a total derivative, or are non-renormalizable. 

4.	 Some of the terminology and constructs associated with gauge theories includes: 

U(y, x) : Parallel transport, 

Aµ(x) : Connection, 

Fµν (x) : Curvature, 

Dµ(x) : Covariant derivative.


These objects form the mathematical framework of the fibre bundle.


5.	 Gauge symmetry is not really a symmetry. The phase of ψ (and part of Aµ) does not carry physical 
information; there is a redundancy in our variables. 
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Figure 1: Dividing the path γ into infinitesimal segments. 

6.	 Finally, we consider the explicit form of the finite parallel transport, U(y, x): choose a path γ from 
x −→ y. We split the path into infinitesimal segments: 

Uγ (y, x) = U(y, xn)U(xn, xn−1) . . . U(x1, x), (2) 

where, from our result from the previous lecture for the infinitesimal parallel transport, 

U(x1, x) ≈ exp [ieAµ(x1 − x)µ] , (3) 

and hence [ ˆ ]
Uγ (y, x) = exp ie Aµ(x)dx

µ . (4) 
γ 

Note that Uγ (y, x) is not necessarily path-independent: in general, Uγ1 (y, x) = Uγ2 (y, x). Let̸

UΓ(x, x) = U−γ2 (y, x)Uγ1 (y, x) (5) 

be the parallel transport associated with the closed loop shown in figure 2. By (4), 

UΓ(x, x) = exp 

[
ie 
˛
Aµdx

µ

] 

, (Γ = γ1 − γ2). (6) 
Γ 

Using Stoke’s theorem, we will see in the problem set that [ ˆ ]
UΓ(x, x) = exp ie Fµν dx

µdxν .	 (7) 
Σ 

UΓ(x) is the Wilson loop, and it is associated with phenomena such as the Aharonov-Bohm effect, and 
Berry’s phase. 
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Figure 2: Paths γ1 and γ2 from x to y, and the enclosed area Σ. 

1.3: NON-ABELIAN GENERALIZATIONS: YANG-MILLS THEORY  

Now consider Ψ =  

ψ1 
. . . 
ψn 

 and search for a theory invariant under 

Ψ(x) −→ Ψ′(x) = V (x)Ψ(x), (8) 

or, with indices restored, 
Ψi(x) −→ Ψ′ 

i(x) = V j (x)Ψj (x). (9) i 

Here, V (x) is an n×n unitary matrix of unit determinant, that is, V (x) ∈ SU(n). Let us construct the non-Abelian 
generalizations of the objects we studied in the Abelian case. 

A. Covariant derivative: 

Introduce U(y, x) ∈ SU(n), transforming as 

U(y, x) −→ V (y)U(y, x)V †(x). (10) 

Again, for yµ = xµ + ϵnµ, taking the limit ϵ −→ 0, we expand U(x + ϵn, x) : 

U(x + ϵn, x) = 1 + igϵnµAµ(x) + . . . , (11) 

where g is a constant, and Aµ(x) is an n × n matrix. As U(y, x) ∈ SU(n), Aµ(x) is also necessarily traceless 
and hermitian; Aµ(x) = A†

µ(x). Inserting this expansion into the transformation law (10), we obtain the gauge 
transformation law for the connection: 

i 
Aµ(x) −→ V (x)Aµ(x)V †(x) − 

g 
(∂µV (x))V †(x). (12) 

As before, we define the covariant derivative by 

1 
nµDµΨ ≡ lim [Ψ(x + ϵn) − U(x + ϵn, x)Ψ(x)] . (13)

ϵ 0 ϵ→

Hence, we have, with indices written explicitly, 

(DµΨ)i = ∂µΨi − ig(Aµ) 
j Ψj . (14)i 

From (8) and (12), we have that, under a gauge transformation, DµΨ(x) −→ V (x)(DµΨ)(x), and so, the Lagrangian 
L = −iΨ(γµDµ − m)Ψ is invariant. 

B. Kinetic term for Aµ : 

We note that under a gauge tranformation, 

[Dµ, Dν ] Ψ −→ V [Dµ, Dν ] Ψ, (15) 

and that 

[Dµ, Dν ] = [∂µ − igAµ, ∂ν − igAν ] 

= − ig(∂µAν − ∂ν Aµ − ig [Aµ, Aν ]) 

≡− igFµν , (16) 
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with Fµν an n × n matrix satisfying Fµν µν and TrFµν = 0. Under a gauge transformation, from (8), we have = F †

that 
Fµν Ψ −→ F ′ = V Fµν Ψ, (17)µν Ψ

′ 

and, as Ψ′ = V Ψ, we have that 
F ′ (18)µν (x) = V (x)Fµν (x)V †(x), 

and so Fµν is gauge covariant, as can be checked directly from (12). Hence, Tr(Fµν F µν ) is invariant under gauge 
transformations. 

C. The Lagrangian: 

We can now write down an invariant L : 

L = − 
c 
Tr(Fµν F µν ) − i ̄ (19)Ψ(γµDµ − m)Ψ,

4   
ψ1  . 

with Ψ =  ..  , Dµ = ∂µ − igAµ, Fµν = ∂µAν − ∂ν Aµ − ig [Aµ, Aν ], and Aµ
† = Aµ, TrAµ = 0. Explicitly, this 

ψn 

Lagrangian is invariant under the local gauge transformation: 

Ψ(x) −→ Ψ′(x) = V (x)Ψ(x), 

i 
Aµ(x) −→ Aµ

′ (x) = V (x)Aµ(x)V †(x) − 
g 
(∂µV (x))V †(x), 

µν (x) = V (x)Fµν (x)V †(x),Fµν (x) −→ F ′ 

where V (x) = exp [iΛa(x)Ta], and Ta are the generators of the Lie algebra, satisfying [Ta, Tb] = ifabcTc. 

Remarks: 

1. Aµ is massless; introducing a mass term breaks gauge invariance. 

2. It is convenient to expand Aµ as Aµ = Aa Ta, with a = 1, 2, n2 − 1. Here, Aµ is an n × n matrix, and µ · · · 
= F aAa

µ are n2 − 1 ordinary functions of x. Similarly, Fµν µν Ta. We have that 

F a = ∂µA
a
ν Ta − ∂ν A

a Ta − ig 
[
Ab Tb, A

c
ν Tc

] 
,	 (20)µν Ta	 µ µ

and so, explicitly, 
F a Aa Ac (21)µν = ∂µ ν − ∂ν Aµ

a + gfabcAµ
b 

ν . 

3.	 There is another gauge invariant term which can be constructed out of F at the quadratic level: 

ϵµνλρTr(F µν F λρ). (22) 

However, this term breaks CP-symmetry, and is also a total derivative. Nevertheless, this term is 
important at a non-perturbative level, as we will see in 8.325. 

4. Non-Abelian gauge fields are associated with fibre bundles. 

1.3.2: The Wilson loop 

Uγ (y, x) = lim U(y, xn)U(xn, xn−1) . . . U(x1, x) (23) 
n→∞ 

n∏ 
= lim (1 + igAµ(xj )∆xj

µ),

∆xj →0 

j=0
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with ∆xj
µ = xj

µ 
+1 − xj

µ, x0 = x, xn+1 = y. Note that the ordering is important in (23), as Aµ is a matrix, and so 
(xj ), Aν (xk)] = 0 in general. [Aµ ̸

Uγ (y, x) = 1 + ig 
n∑ 

j=0 

Aµ(xj )∆x
µ 
j + (ig)2 

n∑ 

j=0 

j−1∑ 

k=0 

Aµ(xj )∆x
µ 
j Av (xk)∆x v 

k + . . . + . (24) 

Now, we introduce xµ(s) to parameterise γ: 

Then 

xµ(0) = 0, xµ(1) = yµ, s ∈ [0, 1] . (25) 

1 1 s1 ˆ
ds1Aµ(x(s1)) 

dxµ 

ds1 
+ (ig)2

ˆ
ds1

ˆ
dxµ dxv 

Uγ (y, x) =1 + ig ds2Aµ(x(s1)) Av(x(s2)) + . . . + (26)
ds1 ds2 

0 0 0 

1 sn−1s1 

= 
∑∞
n=0   

1 

ˆ 

0 0 0 

ˆ ˆ
dxµ1 dxµn 

(ig)n ds1 ds2 . . . dsnAµ1 (x(s1)) . . . Aµn (x(sn)) (27)
ds1 dsn 

ig ˆ dxµ ≡P exp ds Aµ(x(s)) (28)
ds 

0  ig ˆ Aµ(x)dx
µ=P exp . (29) 

γ 

By construction, under a gauge transformation, 

Uγ (y, x) −→ V (y)Uγ (y, x)V †(x). (30) 

To prove this directly using (12) is slightly non-trivial. As in the Abelian case, in general Uγ1 (y, x) = Uγ2 (y, x). For ̸
a closed loop Γ, UΓ(x, x) is nontrivial. The non-Abelian generalisation of Stokes’ theorem can be used to relate the 
parallel transport around the loop to the flux passing through the loop. For an infinitesimal loop, 

UΓ(x, x)Ψ − Ψ = 
1 
2 
Fµν σ

µν Ψ, (31) 

where σµν is the area element encircled by the loop. Under a gauge transformation, 

UΓ(x, x) −→ V (x)UΓ(x, x)V †(x), (32) 

and hence, 

WΓ(x) = Tr(UΓ(x, x)) = Tr(P exp ig
˛
Γ 
Aµdx

µ) (33) 

is gauge invariant. This is the non-Abelian Wilson loop. It is a very important object. 
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