8.324 Relativistic Quantum Field Theory II

MIT OpenCourseWare Lecture Notes

Hong Liu, Fall 2010

Lecture 3

We begin with some comments concerning gauge-symmetric theories:

1. A U(1) local symmetry leads to the field $A_{\mu}(x)$, mediating interactions between the charge fields $\psi_i(x)$.

2. No mass term is allowed for A_{μ} or the gauge symmetry is broken.

3. It is possible to construct theories using other gauge invariant terms, for example

$$^{\mu\nu\lambda\rho}F_{\mu\nu}F_{\lambda\rho}, (F_{\mu\nu}F^{\mu\nu})^2, \bar{\psi}F_{\mu\nu}\gamma^{\mu}\gamma^{\nu}\psi.$$
(1)

All of these terms can be written as a total derivative, or are non-renormalizable.

4. Some of the terminology and constructs associated with gauge theories includes:

U(y, x): Parallel transport,

 $A_{\mu}(x)$: Connection,

 $F_{\mu\nu}(x)$: Curvature,

 $D_{\mu}(x)$: Covariant derivative.

These objects form the mathematical framework of the fibre bundle.

5. Gauge symmetry is not really a symmetry. The phase of ψ (and part of A_{μ}) does not carry physical information; there is a redundancy in our variables.

Figure 1: Dividing the path γ into infinitesimal segments.

Finally, we consider the explicit form of the finite parallel transport, U(y, x): choose a path γ from $x \longrightarrow y$. We split the path into infinitesimal segments:

$$U_{\gamma}(y,x) = U(y,x_n)U(x_n,x_{n-1})\dots U(x_1,x),$$
(2)

where, from our result from the previous lecture for the infinitesimal parallel transport,

$$U(x_1, x) \approx \exp\left[ieA_{\mu}(x_1 - x)^{\mu}\right],\tag{3}$$

and hence

6.

$$U_{\gamma}(y,x) = \exp\left[ie\int_{\gamma}A_{\mu}(x)dx^{\mu}\right].$$
(4)

Note that $U_{\gamma}(y, x)$ is not necessarily path-independent: in general, $U_{\gamma_1}(y, x) \neq U_{\gamma_2}(y, x)$. Let

$$U_{\Gamma}(x,x) = U_{-\gamma_2}(y,x)U_{\gamma_1}(y,x)$$
(5)

be the parallel transport associated with the closed loop shown in figure 2. By (4),

$$U_{\Gamma}(x,x) = \exp\left[ie \oint_{\Gamma} A_{\mu} dx^{\mu}\right], \ (\Gamma = \gamma_1 - \gamma_2).$$
(6)

Using Stoke's theorem, we will see in the problem set that

$$U_{\Gamma}(x,x) = \exp\left[ie \int_{\Sigma} F_{\mu\nu} dx^{\mu} dx^{\nu}\right].$$
(7)

 $U_{\Gamma}(x)$ is the Wilson loop, and it is associated with phenomena such as the Aharonov-Bohm effect, and Berry's phase.

Figure 2: Paths γ_1 and γ_2 from x to y, and the enclosed area Σ .

1.3: NON-ABELIAN GENERALIZATIONS: YANG-MILLS THEORY

Now consider $\Psi = \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_n \end{pmatrix}$ and search for a theory invariant under

$$\Psi(x) \longrightarrow \Psi'(x) = V(x)\Psi(x), \tag{8}$$

or, with indices restored,

$$\Psi_i(x) \longrightarrow \Psi'_i(x) = V_i^j(x)\Psi_j(x). \tag{9}$$

Here, V(x) is an $n \times n$ unitary matrix of unit determinant, that is, $V(x) \in SU(n)$. Let us construct the non-Abelian generalizations of the objects we studied in the Abelian case.

A. Covariant derivative:

Introduce $U(y, x) \in SU(n)$, transforming as

$$U(y,x) \longrightarrow V(y)U(y,x)V^{\dagger}(x).$$
(10)

Again, for $y^{\mu} = x^{\mu} + \epsilon n^{\mu}$, taking the limit $\epsilon \longrightarrow 0$, we expand $U(x + \epsilon n, x)$:

$$U(x + \epsilon n, x) = 1 + ig\epsilon n^{\mu}A_{\mu}(x) + \dots, \qquad (11)$$

where g is a constant, and $A_{\mu}(x)$ is an $n \times n$ matrix. As $U(y,x) \in SU(n)$, $A_{\mu}(x)$ is also necessarily traceless and hermitian; $A_{\mu}(x) = A^{\dagger}_{\mu}(x)$. Inserting this expansion into the transformation law (10), we obtain the gauge transformation law for the connection:

$$A_{\mu}(x) \longrightarrow V(x)A_{\mu}(x)V^{\dagger}(x) - \frac{i}{g}(\partial_{\mu}V(x))V^{\dagger}(x).$$
(12)

As before, we define the covariant derivative by

$$n^{\mu}D_{\mu}\Psi \equiv \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[\Psi(x+\epsilon n) - U(x+\epsilon n, x)\Psi(x)\right].$$
(13)

Hence, we have, with indices written explicitly,

$$(D_{\mu}\Psi)_{i} = \partial_{\mu}\Psi_{i} - ig(A_{\mu})_{i}^{j}\Psi_{j}.$$
(14)

From (8) and (12), we have that, under a gauge transformation, $D_{\mu}\Psi(x) \longrightarrow V(x)(D_{\mu}\Psi)(x)$, and so, the Lagrangian $\mathscr{L} = -i\overline{\Psi}(\gamma^{\mu}D_{\mu} - m)\Psi$ is invariant.

B. Kinetic term for A_{μ} :

We note that under a gauge tranformation,

$$[D_{\mu}, D_{\nu}] \Psi \longrightarrow V [D_{\mu}, D_{\nu}] \Psi, \tag{15}$$

and that

$$[D_{\mu}, D_{\nu}] = [\partial_{\mu} - igA_{\mu}, \partial_{\nu} - igA_{\nu}]$$

= $-ig(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - ig[A_{\mu}, A_{\nu}])$
= $-igF_{\mu\nu},$ (16)

with $F_{\mu\nu}$ an $n \times n$ matrix satisfying $F_{\mu\nu} = F^{\dagger}_{\mu\nu}$ and $\text{Tr}F_{\mu\nu} = 0$. Under a gauge transformation, from (8), we have that

$$F_{\mu\nu}\Psi \longrightarrow F'_{\mu\nu}\Psi' = VF_{\mu\nu}\Psi, \tag{17}$$

and, as $\Psi' = V\Psi$, we have that

$$F'_{\mu\nu}(x) = V(x)F_{\mu\nu}(x)V^{\dagger}(x),$$
 (18)

and so $F_{\mu\nu}$ is gauge covariant, as can be checked directly from (12). Hence, $\text{Tr}(F_{\mu\nu}F^{\mu\nu})$ is invariant under gauge transformations.

C. The Lagrangian:

We can now write down an invariant \mathscr{L} :

$$\mathscr{L} = -\frac{c}{4} \operatorname{Tr}(F_{\mu\nu}F^{\mu\nu}) - i\bar{\Psi}(\gamma^{\mu}D_{\mu} - m)\Psi, \qquad (19)$$

with $\Psi = \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_n \end{pmatrix}$, $D_{\mu} = \partial_{\mu} - igA_{\mu}$, $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - ig[A_{\mu}, A_{\nu}]$, and $A_{\mu}^{\dagger} = A_{\mu}$, $\operatorname{Tr}A_{\mu} = 0$. Explicitly, this

Lagrangian is invariant under the local gauge transformation:

$$\Psi(x) \longrightarrow \Psi'(x) = V(x)\Psi(x),$$

$$A_{\mu}(x) \longrightarrow A'_{\mu}(x) = V(x)A_{\mu}(x)V^{\dagger}(x) - \frac{i}{g}(\partial_{\mu}V(x))V^{\dagger}(x)$$

$$F_{\mu\nu}(x) \longrightarrow F'_{\mu\nu}(x) = V(x)F_{\mu\nu}(x)V^{\dagger}(x),$$

where $V(x) = \exp[i\Lambda^a(x)T_a]$, and T_a are the generators of the Lie algebra, satisfying $[T_a, T_b] = if_{abc}T_c$.

Remarks:

1. A_{μ} is massless; introducing a mass term breaks gauge invariance.

2. It is convenient to expand A_{μ} as $A_{\mu} = A^a_{\mu}T_a$, with $a = 1, 2, \dots, n^2 - 1$. Here, A_{μ} is an $n \times n$ matrix, and A^a_{μ} are $n^2 - 1$ ordinary functions of x. Similarly, $F_{\mu\nu} = F^a_{\mu\nu}T_a$. We have that

$$F^a_{\mu\nu}T_a = \partial_\mu A^a_\nu T_a - \partial_\nu A^a_\mu T_a - ig \left[A^b_\mu T_b, A^c_\nu T_c\right], \qquad (20)$$

and so, explicitly,

$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f_{abc} A^b_\mu A^c_\nu.$$
⁽²¹⁾

3. There is another gauge invariant term which can be constructed out of F at the quadratic level:

$$\epsilon_{\mu\nu\lambda\rho} \mathrm{Tr}(F^{\mu\nu}F^{\lambda\rho}). \tag{22}$$

However, this term breaks CP-symmetry, and is also a total derivative. Nevertheless, this term is important at a non-perturbative level, as we will see in 8.325.

4. Non-Abelian gauge fields are associated with fibre bundles.

1.3.2: The Wilson loop

$$U_{\gamma}(y,x) = \lim_{n \to \infty} U(y,x_n)U(x_n,x_{n-1})\dots U(x_1,x)$$
(23)
=
$$\lim_{\Delta x_j \to 0} \prod_{j=0}^n (1 + igA_{\mu}(x_j)\Delta x_j^{\mu}),$$

with $\Delta x_j^{\mu} = x_{j+1}^{\mu} - x_j^{\mu}$, $x_0 = x$, $x_{n+1} = y$. Note that the ordering is important in (23), as A_{μ} is a matrix, and so $[A_{\mu}(x_j), A_{\nu}(x_k)] \neq 0$ in general.

$$U_{\gamma}(y,x) = 1 + ig \sum_{j=0}^{n} A_{\mu}(x_j) \Delta x_j^{\mu} + (ig)^2 \sum_{j=0}^{n} \sum_{k=0}^{j-1} A_{\mu}(x_j) \Delta x_j^{\mu} A_v(x_k) \Delta x_k^{\nu} + \dots + .$$
(24)

Now, we introduce $x^{\mu}(s)$ to parameterise γ :

$$x^{\mu}(0) = 0, x^{\mu}(1) = y^{\mu}, s \in [0, 1].$$
 (25)

Then

$$U_{\gamma}(y,x) = 1 + ig \int_{0}^{1} ds_{1}A_{\mu}(x(s_{1}))\frac{dx^{\mu}}{ds_{1}} + (ig)^{2} \int_{0}^{1} ds_{1} \int_{0}^{s_{1}} ds_{2}A_{\mu}(x(s_{1}))\frac{dx^{\mu}}{ds_{1}}A_{\nu}(x(s_{2}))\frac{dx^{\nu}}{ds_{2}} + \dots +$$
(26)

$$=\sum_{n=0}^{\infty} (ig)^n \int_0^1 ds_1 \int_0^{s_1} ds_2 \dots \int_0^{s_{n-1}} ds_n A_{\mu_1}(x(s_1)) \frac{dx^{\mu_1}}{ds_1} \dots A_{\mu_n}(x(s_n)) \frac{dx^{\mu_n}}{ds_n}$$
(27)

$$\equiv P \exp\left[ig \int_{0}^{1} ds \frac{dx^{\mu}}{ds} A_{\mu}(x(s))\right]$$
(28)

$$=P\exp\left[ig\int_{\gamma}A_{\mu}(x)dx^{\mu}\right].$$
(29)

By construction, under a gauge transformation,

$$U_{\gamma}(y,x) \longrightarrow V(y)U_{\gamma}(y,x)V^{\dagger}(x).$$
 (30)

To prove this directly using (12) is slightly non-trivial. As in the Abelian case, in general $U_{\gamma_1}(y, x) \neq U_{\gamma_2}(y, x)$. For a closed loop Γ , $U_{\Gamma}(x, x)$ is nontrivial. The non-Abelian generalisation of Stokes' theorem can be used to relate the parallel transport around the loop to the flux passing through the loop. For an infinitesimal loop,

$$U_{\Gamma}(x,x)\Psi - \Psi = \frac{1}{2}F_{\mu\nu}\sigma^{\mu\nu}\Psi,$$
(31)

where $\sigma^{\mu\nu}$ is the area element encircled by the loop. Under a gauge transformation,

$$U_{\Gamma}(x,x) \longrightarrow V(x)U_{\Gamma}(x,x)V^{\dagger}(x), \qquad (32)$$

and hence,

$$W_{\Gamma}(x) = \operatorname{Tr}(U_{\Gamma}(x, x)) = \operatorname{Tr}(P \exp ig \oint_{\Gamma} A_{\mu} dx^{\mu})$$
(33)

is gauge invariant. This is the non-Abelian Wilson loop. It is a very important object.

8.324 Relativistic Quantum Field Theory II Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.