8.324 Relativistic Quantum Field Theory II
 MIT OpenCourseWare Lecture Notes

Hong Liu, Fall 2010
Lecture 25

5.3.2: Computation of Beta-Functions

We consider the beta functions for the mass m and the coupling g :

$$
\begin{equation*}
\beta_{g}=\mu \frac{d g}{d \mu}, \quad \beta_{m}=\mu \frac{d \lambda_{m}}{d \mu} \tag{1}
\end{equation*}
$$

where $\lambda_{m}=\frac{m^{2}(\mu)}{\mu^{2}}$. Note that the coupling constants in different renormalization schemes are generally different. In general, we have
$\left\{\lambda_{i}\right\}:$ scheme 1,
$\left\{\tilde{\lambda}_{i}\right\}:$ scheme 2.
In the problem set, we will see how the β-functions transform. In particular, the first two terms are universal.
Example 1: $g \phi^{3}$ in $d=6$ with MS scheme

$$
\begin{aligned}
\mathscr{L} & =-\frac{1}{2}\left(\partial \phi_{B}\right)^{2}-\frac{1}{2} m_{B}^{2} \phi_{B}^{2}+\frac{g_{B}}{6} \phi_{B}^{3} \\
& =-\frac{1}{2}(1+A)(\partial \phi)^{2}-\frac{1}{2} m^{2}(1+B) \phi^{2}+\frac{g}{6} \mu^{\frac{\epsilon}{2}}(1+C) \phi^{3}
\end{aligned}
$$

with

$$
\begin{aligned}
\phi_{B} & =(1+A)^{\frac{1}{2}} \phi \\
m_{B} & =(1+A)^{-\frac{1}{2}}(1+B)^{\frac{1}{2}} m \\
g_{B} & =g \mu^{\frac{\epsilon}{2}}(1+A)^{\frac{3}{2}}(1+C)
\end{aligned}
$$

$A=-\frac{\alpha}{6 \epsilon}, B=-\frac{\alpha}{\epsilon}$ and $C=-\frac{\alpha}{\epsilon}$, up to $O\left(\alpha^{2}\right)$. The key is to note that the bare quantities should be independent of μ :

$$
\begin{equation*}
\mu \frac{d m_{B}}{d \mu}=0, \quad \mu \frac{d g_{B}}{d \mu}=0 \tag{2}
\end{equation*}
$$

This leads to results for β_{g} and β_{m}. In general, in the case of dimensional regularization and minimal subtraction,

$$
\begin{equation*}
g_{i}^{(B)}=\mu^{\delta_{i}(\epsilon)}\left[\lambda_{i}(\mu)+\sum_{n=1}^{\infty} \epsilon^{-n} G_{i}^{(n)}\left(\lambda_{j)}\right]\right. \tag{3}
\end{equation*}
$$

where $\delta_{i}(\epsilon)=\delta_{i}+a_{i} \epsilon$: the last correction is due to dimensional regularization. From (2), we have

$$
\begin{equation*}
\beta_{i}(\epsilon)=\mu \frac{d \lambda_{i}}{d \mu} . \tag{4}
\end{equation*}
$$

We can expand

$$
\begin{equation*}
\beta_{i}(\epsilon)=\beta_{i}+\epsilon \alpha_{i} \tag{5}
\end{equation*}
$$

where the first term is the β-function and the second term again comes from dimensional regularization. If we take the μ-derivative of (3), we find

$$
\begin{aligned}
0= & \delta_{i}(\epsilon)\left[\lambda_{i}+\sum_{i=1}^{\infty} \epsilon^{-n} G_{i}^{(n)}\right] \\
& +\left[\beta_{i}(\epsilon)+\sum_{i=1}^{\infty} \epsilon^{-n} \frac{\partial G_{i}^{(n)}}{\partial \lambda_{j}} \beta_{j}(\epsilon)\right] .
\end{aligned}
$$

Equating both sides of the above equation order by order in ϵ, we find

$$
\begin{aligned}
& \left(\delta_{i}+a_{i} \epsilon\right)\left[\lambda_{i}+\epsilon^{-1} G_{i}^{(0)}+\epsilon^{-2} G_{i}^{(2)}+\ldots\right] \\
+ & {\left[\beta_{i}+\epsilon \alpha_{i}+\epsilon^{-1} \frac{\partial G_{i}^{(0)}}{\partial \lambda_{j}}\left(\beta_{j}+\epsilon \alpha_{j}\right)+\epsilon^{-2} \ldots\right]=0 }
\end{aligned}
$$

and so, at $O(\epsilon)$,

$$
\begin{equation*}
\alpha_{i}=-\lambda_{i} a_{i} \tag{6}
\end{equation*}
$$

(note that we are not invoking the summation convention here,) and, at $O\left(\epsilon^{2}\right)$,

$$
\begin{equation*}
\delta_{i} \lambda_{i}+a_{i} G_{i}^{(1)}+\beta_{i}+\sum_{j} \alpha_{j} \frac{\partial G_{i}^{(1)}}{\partial \lambda_{j}}=0 \tag{7}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\beta_{i}=-\delta_{i} \lambda_{i}-a_{i} G_{i}^{(1)}+\sum_{j} \frac{\partial G_{i}^{(1)}}{\partial \lambda_{j}} a_{j} \lambda_{j} \tag{8}
\end{equation*}
$$

We note that the β_{i} are determined by simple-pole residuces of the counter-terms, and that at $O\left(\epsilon^{-n}\right)$ for $n \geq 1$, the constraints determine $G_{i}^{(n)}$ for $n \geq 2$ in terms of $G_{i}^{(1)}$. We now return to our discussion of the $g \phi^{3}$-theory. Here,

$$
\begin{aligned}
& g_{1}=\alpha_{B}=\alpha \mu^{\epsilon}(1+A)^{-3}(1+B) \\
& g_{2}=m_{B}^{2}=\mu^{2} \lambda_{m}\left(1-\frac{5 \alpha}{6 \epsilon}+\ldots\right)
\end{aligned}
$$

where $\alpha \equiv \frac{g^{2}}{(4 \pi)^{3}}$, and so we find

$$
\begin{equation*}
\delta_{1}(\epsilon)=\epsilon, \quad \delta_{1}=0, \quad a_{1}=1, \quad G_{1}^{(1)}=-\frac{3}{2} \alpha^{2} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{2}(\epsilon)=2, \quad \delta_{2}=2, \quad a_{2}=0, \quad G_{1}^{(1)}=-\frac{5}{6} \lambda_{m} \alpha \tag{10}
\end{equation*}
$$

From this, we find for the β-functions,

$$
\begin{aligned}
\beta_{\alpha} & =\frac{3}{2} \alpha^{2}-3 \alpha^{2}=-\frac{3}{2} \alpha^{2} \\
\beta_{m} & =-2 \lambda_{m}-\frac{5}{6} \lambda_{m} \alpha=-2 \lambda_{m}-\frac{5}{6} \lambda_{m} \alpha+\ldots
\end{aligned}
$$

Let us consider the physical implications of these equations.

1. At weak coupling, $\alpha \ll 1, \beta_{m}$ is dominated by the first term, $\beta_{m} \approx-2 \lambda_{m}$. This gives the dimension in the absence of the interaction, which implies the familiar behaviour

$$
\begin{equation*}
\lambda_{m}(\mu)=\lambda_{m}\left(\mu_{0}\right)\left(\frac{\mu_{0}}{\mu}\right)^{2} \tag{11}
\end{equation*}
$$

and so $\lambda_{m}(\mu)$ grows quadratically as we decrease μ.
2. α is marginal in the absence of interactions, and so, interactions are important to determine the leading contribution. For $g \phi^{3}, \beta_{2}<0$, and the coupling is marginally relevant: α becomes stronger going into the infrared, as we decrease μ, and stronger going into the ultraviolet, as we increase μ.
We now integrate

$$
\begin{equation*}
\mu \frac{d \alpha}{d \mu}=-\frac{3}{2} \alpha^{2} \tag{12}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
d\left(\frac{1}{\alpha}\right)=\frac{3}{2} d \log \mu \tag{13}
\end{equation*}
$$

Suppose that $\alpha\left(\mu_{0}\right)=\alpha_{0}$. Then we have

$$
\begin{equation*}
\frac{1}{\alpha(\mu)}-\frac{1}{\alpha_{0}}=\frac{3}{2} \log \frac{\mu}{\mu_{o}} \tag{14}
\end{equation*}
$$

and hence,

$$
\begin{equation*}
\alpha(\mu)=\frac{\alpha_{0}}{1+\frac{3 \alpha_{0}}{2} \log \frac{\mu}{\mu_{0}}} . \tag{15}
\end{equation*}
$$

In particular, as $\mu \longrightarrow \infty, \alpha(\mu) \longrightarrow 0$. This is asymptotic freedom. $\alpha(\mu) \longrightarrow \infty$ when $\frac{3 \alpha_{0}}{2} \log \frac{\mu}{\mu_{0}}=-1$. That

Figure 1: We find a linear relationship between $\alpha^{-1}(\mu)$ and $\log (\mu)$ with a positive gradient for the ϕ^{3} theory.
is, when $\mu=\mu_{0} e^{-\frac{2}{3 \alpha_{0}}} \equiv \Lambda$. We note that this discussion only applies to $\alpha(\mu) \ll 1$. Of course, our one-loop approximation already breaks down before Λ is reached. Nevertheless, Λ provides a characteristic scale for the system. Λ is independent of μ_{0}. We can rewrite

$$
\begin{equation*}
\alpha(\mu)=\frac{2}{3} \frac{1}{\log \frac{\mu}{\Lambda}}, \tag{16}
\end{equation*}
$$

and instead of specifying $\alpha\left(\mu_{0}\right)=\alpha_{0}$, we can simply specify Λ. The system does not have any dimensionless coupling. Rather, it has only a scale Λ. This is known as dimensional transmutation.

Now let us go back to the issue of the large logarithms encountered in the on-shell scheme when $k^{2} \gg m^{2}$. We encountered $\alpha \log \frac{k^{2}}{m^{2}}$ at the one-loop level. However, it goes away if we choose $\mu \sim k$. We want to understand why this is, and why we can still trust perturbation theory. To see what is happening, let us consider, for $\mu \sim k$

$$
\begin{equation*}
\alpha\left(\mu_{0}=m\right)=\alpha_{0}, \tag{17}
\end{equation*}
$$

so that

$$
\begin{equation*}
\alpha(\mu)=\frac{\alpha}{1+\frac{3}{2} \alpha_{0} \log \frac{\mu}{m}} \sim \alpha_{0} \sum_{n=0}^{\infty}\left(\alpha_{0} \log \frac{\mu}{m}\right)^{n} . \tag{18}
\end{equation*}
$$

These are exactly the logarithmic terms we have seen before. They were just transferred to the relation between $\alpha(\mu \sim k)$ and α_{0}. The higher loop correction give higher powers in $\alpha_{0} \log \frac{\mu}{m}$. As a perturbation series in α_{0}, the last expression becomes bad when $\alpha_{0} \log \frac{\mu}{m}$ becomes large, but through the miracle of the renormalization group flow, by integrating the β-function, we have essentially resummed this bad series as far as $\alpha(\mu)$ remains small for all μ. This remarkable result is the essence of the renormalization group flow, which clearly also applies to the Wilsonian approach.

Figure 2: $\alpha(\mu)$ and $\alpha\left(\mu_{0}\right)$ are separated by large logarithms, but if we take infinitesimal steps, $\Delta \alpha=$ $\alpha^{2}(\mu) \log \frac{\mu+\Delta \mu}{\mu} \sim \alpha^{2}(\mu) \frac{\Delta \mu}{\mu}$, and so for $\alpha^{2}(\mu)$ small, we can ignore the higher order terms.

MIT OpenCourseWare
http://ocw.mit.edu

8.324 Relativistic Quantum Field Theory II

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

