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Let us consider some of the renormalization schemes we discussed in the previous lecture. A particularly 
convenient renormalization scheme in dimensional regularization is minimal subtraction (MS). In this case, we 
take a = b = c = 0. This gives [ ˆ 1 ( )]

α k2 2 4πµ2 

ΠMS (k
2) = − 

2 6
+ m + dx D log 

eγ D
, 

0 

1 α 
ˆ ( 

4πµ2 )
g
VMS (k1, k2, k3) = 1 + 

2 
dF3 log 

eγ D̃
, 

where 
´ 
dF3 ≡ 

´ 1 
dx1 
´ 1 

dx2 
´ 1 

dx3δ(x1 + x2 + x3 − 1), D ≡ x(1 − x)k2 + m2 and
0 0 0 

D̃ ≡ m2 + x2x3k1
2 + x1x3k2

2 + x1x2k3
2 . The k-dependence of g(µ) and m(µ) should be such that physical 

observables are independent of µ. In the MS scheme, we take 

1 1 1 
( 
4π2 )

ϵ 
−→ 

ϵ 
− 

2 
log 

eγ 
, (1) 

giving 

Π (k2) = − 
α 
[
k2 

+ m 2 + 
ˆ 1 

dx D log 

( 
µ2 )] 

. (2) MS 2 6 0 D 

In the on-shell scheme, we have 

1 
Z

(on) 
(∂ϕphys)

2 1 
Z(on)m 2 

phys + 
gphys 

2 ϕ − 
2 m physϕ

2 ϵ 
2Z(on)ϕ3 

g phys.L (ϕB ,mB , gB ) = − (3) µ
6 

In the MS scheme, we have 

1 
Zϕ 

(MS) 
(∂ϕMS )

2 − 
1 

m mMS ϕ
2 
MS + 

gMS 
Z(MS) 2 

gMS 

2

ϵ 
2

ϵ 
Z(MS)ϕ3 
g MS .L (ϕB ,mB , gB ) = − (4) µ

2 2 6 

Finally, in the MS scheme, we have 

1 ( )2 1 
2 
Z

(MS) 
∂ϕ − 

2 
Z(MS)m 2 ϕ2 +mϕ MS MS MS 

Z(MS)ϕ3 
gL (ϕB ,mB , gB ) = − (5) µ . 

MS 6 

For the fields, we have ( )
ϕB = Zϕ 

(on) 

(
1 
2 
ϕphys )

= Zϕ 
(MS) 

ϕMS 

1 
2

1 
2

( )
Zϕ 

(MS) 
ϕ= MS . 

The three field renormalizations here are all divergent, but their ratios are finite. Why do we not just use the 
on-shell scheme? 

1. There are instances where it can’t be used, for example, if mphys = 0. 

2. Other schemes can be more convenient in certain settings. 
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∣ ∣ 
3.	 More seriously, consider ∣k2∣ ≫ m2 . Then we have 

D ≈ x(1 − x)k2 ,	 (6) 

and 
D k2 

log ≈ log + . . . . (7) 
D0 m2 

Hence, 
α 

( 
k2 )

Π(k2) ≈ k2 log , (8) 
12 m2 

which can be large compared with k2, and so perturbation theory is no longer a good approximation. 
Similarly, 

1 
( 

k2 )


g
V (k1, k2, k3) ≈ 1 + α log 

m2 
, (9)


and perturbation theory is not a good approximation for large k2 . Introducing µ allows us to address 
this problem: if we choose µ ∼ k, no such logarithm arises. 

If we choose µ appropriately, that is, to be comparable to the momentum scale of the physical process, we can 
improve our perturbation expansion. As we will see shortly, 

1.	 g(µ) and m(µ) can be considered as the counterparts of the scale-dependent coupling constants of the 
Wilsonian approach. 

2.	 The reason we get large logarithmic terms in the on-shell scheme is that we are trying to use coupling 
defined at one scale to describe physics at very different scales. We will return to this point later with 
a physical explanation. 

Let us consider the structure of general correlation functions. Having looked at Π(k2) and V (k1, k2, k3) at the 
one-loop level, let us now look at general connected Greens functions in some renormalization scheme, such as the 
MS scheme: 

Gn(x1, . . . , xn) = ⟨Ω |T (ϕ(x1) . . . ϕ(xn))| Ω⟩ ,	 (10) 

where ϕ(x) is the renormalized field. Then 

Gn({x} , g(µ),m(µ); µ) = Gn({x} , λi(µ); µ)	 (11) 

where λi(µ) are dimensionless coupling corresponding to g and m2 , defined with respect to µ. For example, 

λm = m 2(µ) 
µ2 . We consider also 

Then 

G(B) 
n (x1, . . . , xn) = ⟨Ω |T (ϕB (x1) . . . ϕB (xn)| Ω⟩ . 

G(B) 
n ({x} , gB , mB ; Λ0), 

(12) 

(13) 
1 
2 
ϕ ϕ, we have that where Λ0 is an ultraviolet cut-off, independent of µ. Since ϕB = Z 

n 

G(B) = Zn 
2 
ϕ Gn,	 (14) 

and so 
nd 

(Z 2 
ϕµ Gn) = 0.	 (15)

dµ 

Introducing γ ≡ 1 µ d log Zϕ, we have 2 dµ ( )
d 

µ + nγ	 Gn = 0, (16)
dµ 

that is, (	 )
∂ ∂ 

µ + βi + nγ Gn = 0	 (17)
∂µ ∂λi 
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where βi ≡ µ dλi . This is the Callan-Symanzik equation. We note that γ = γ({λi}) and βi = βi ({λi}) . From the dµ 

Callan-Symanzik equation, we can express Gn({x} , λi(µ
′); µ′) in terms of Gn({x} , λi(µ); µ). First, consider γ = 0. 

Then we have 
d 
Gn = 0, (18)

dµ 

and so 
Gn({x} , λi(µ

′); µ′) = Gn({x} , λi(µ); µ). (19) 

These are the running coupling constants we had earlier. In the case γ = 0, γ does not depend on µ explicitly, but ̸
it does indirectly through the γ = γ (λj (µ)) . In this case, we have [ ˆ log µ′ 

]
Gn({x} , λi(µ

′); µ′) = exp −n dξ γ (λj (ξ)) × Gn({x} , λi(µ); µ). (20) 
log µ 

γ captures how the definition of ϕ changes as we change µ. In the case that there is only one coupling g, that is, if 
dgm = 0, then since µ dµ = β, 

dg
dξ = , (21)

β 

dg′ 
Gn({x} , λi(µ

′); µ′) = exp 

[
−n 
ˆ log µ′ 

γ (g′)

] 

× Gn({x} , λi(µ); µ). (22) 
log µ β(g′) 

Let us consider some applications of this: 

1. For the high momentum behviour, consider 

G2 (p, λ(µ
′); µ′) = η−2(µ′, µ)G2 (p, λi(µ); µ) (23) [ ´ log µ′ ]

where η−n ≡ exp −n 
log µ dξ γ (λj (ξ)) . In particular, 

G2 (κp, λ(κµ
′); κµ′) = η−2(κµ, µ)G2 (κp, λi(µ); µ) . (24) 

This gives a one-dimensional group, ( )
1 p

G2 (p, λi(µ); µ) = f2 , λi(µ) (25) 
p2 µ 

and so ( )
1 p

G2 (κp, λi(κµ); κµ) = 
κ2p2 

f2 
µ
, λi(κµ)

1 
= G2 (p, λi(κµ); µ) . 

κ2 

Equivalently, we have

η2(κµ, µ)


G2 (κp, λi(µ); µ) = G2 (p, λi(κµ); µ) . (26)
κ2 

2. At a fixed point, βi = 0, and so λi is a constant, so γ({λi}) is also a constant, and ( )
d 

µ
dµ 

+ nγ Gn({x}) = 0. (27) 

Consider, for example, G2(x; µ) = µ2f(µx). Then we have that ( )
d 

y + 2∆ f(y) = 0, (28)
dy


where ∆ = 2 + γ. Hence,

c 

f(y) = 
y2∆ 

(29) 
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and 
c ′ 

G2(x; µ) = 
x2∆ 

. (30) 

More generally, for 
Gn ({x} ; µ) = µ n∆0 fn ({µx}) (31) 

where ∆0 is the canonical dimension, from the Callan-Symanzik equation, we have that fn should satisfy 

fn ({λy}) = λ−n∆fn ({y}) (32) 

with ∆ = ∆0 + γ. 

In summary, we have introduced the renormalization scale µ, and λi(µ) are scale-dependent couplings, given by 
the renormalization group flow. Different choices of µ correspond to different descriptions of physical observables. 
However, the physical observables themselves do not depend on the choice of µ. 
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