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5.2.2: Fixed Points of Renormalization Flow 

What is the end point of a renormalization group flow as we take Λ −→ 0? This is one of the most important 
physical questions. Let us consider the possibilities: 

1.	 Some couplings become very strong. This leads to the formation of bound states, and to new infrared 
degrees of freedom, as in quantum chromodynamics. 

2.	 {λj } has a fixed point. That is, βi({λj }) = 0, and so 

dλi
Λ = 0,	 (1) 
dΛ 

meaning λi(Λ) = λ∗ 
i is a constant, independent of scale. At a fixed point, a theory is scale invariant. 

As a trivial example of this second case, we will consider a Gaussian fixed point. Let the Lagrangian be given by 

1 2L = (∂ϕ) ,	 (2) 
2 

describing a free, massless particle. In this case, Si = 0, and all of the couplings satisfy λi = 0, and this is clearly 
invariant under the flow. In fact, our earlier discussion of RG flow and the notion of relevant and irrelevant couplings 
are defined implicitly with respect to this fixed point. 

L = L0 + Lint,	 (3) ∑ 
where L0 = 2

1 (∂ϕ)
2 
and Lint = i giOi. The dimensions ∆i of Oi are found from the canonical dimension of ϕ, 

which is defined using L0. For a generic fixed point, λi(Λ) = λ∗ 
i constant, consider a small deviation from the fixed 

Figure 1: Flow diagram for the dimensionless couplings, λ4 and λ6. λ4 is marginally irrelevant. 

point, 
δλi = λi − λ∗ 

i . (4) 

Then, 

dδλi
Λ = βi 

})
j + δλj 

δλj + . . . 

dΛ 

= 

∗ 

∑
∑ 

({
λ

dβi 

dλjj α�
j 

= Tij δλj + . . . 
j 
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. i , of T , with eigenvalues t�, where α indexes the with Tij = d�i We now consider the left eigenvectors, edαj α�

j 

eigenvectors. That is, ∑ 
e
(
i
�)
Tij = t�e

(
j
�) 
. (5) 

i 

Now, we let ∑ 
U� = ei 

(�)
δλi. (6) 

i 

Then 

Λ 
dU� 

= t�U� + O(U2). (7) 
dΛ 

Disregarding the non-linear terms, we suppose at some Λ0 that U� = U� 
(0) 

. Then we have that 

U�(Λ) =

( )tαΛ 
U (0) 

Λ0 
� . (8) 

U� is the scaling variable, and −t� = [U�] is the scaling dimension, as defined with respect to the fixed point {λ∗} . 
We have that  > 0 relevant, 

−t� = [U�] =  
= 0 marginal, (9) 

< 0 irrelevant. 

Now, 
L = L∗ + Lint, (10) 

where ∑ 
L = λ∗ 

i Oi,∗ 

i ∑∑ 
Lint = δλiOi = U�Õ�, 

i � [
Õ�

]
= d + t�. Now consider the case of U1,˜where O� are the scaling operators with respect to L

U2 with t1 < 0 (relevant) and t2 > 0 (irrelevant). Then 
∗. We have that

)(
U1 

U2

The critical surface is the submanifold in the space of couplings spanned by irrelevant couplings near a fixed 

( )
δλ1 = M . (11)
δλ2

Figure 2: Flow in the U1, U2 plane and the λ1, λ2 plane about the fixed point λ∗. 

point. Any point on the critical surface will flow to the fixed point. A point lying off the critical surface will flow 
away from it, as shown in figure 3. The critical surface has a finite co-dimension, since the number of relevant and 
marginal couplings is always finite. 
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Figure 3: The critical surface submanifold. Couplings on the manifold are irrelevant and flow towards the fixed 
point. Couplings off the manifold flow away from it. 

Let us consider, at the ultraviolet scale, Λ0, L = L0 + Lint, with L0 = 1
2 (∂ϕ)

2 
, and Lint = 

∑ 
i λiOi giving 

deviations from the fixed point. 
Oi = ϕ2 , (∂ϕ)2 

, ϕ4 , . . . (12) 

are scaling operators with respect to L0. In general near {λ∗ 
i } , the spectrum of scaling operators {O�} and their 

conformal dimensions will be very different from those at the Gaussian fixed point. Such non-trivial fixed points 
are very rare at a finite distance away from the Gaussian fixed point, particularly in d ≥ 3. For this reason, they 
provide a very limited theoretical tool. We consider one famous example: 

L = 
1
(∂ϕ)

2 
+ 

λ
ϕ4 (13)

2 4! 

at Λ0 in d = 4. Then we have 
βα = cλ2 + . . . , (14) 

where c is a positive constant, giving a marginally irrelevant flow back to the Gaussian fixed point. If we now 
consider d = 4 − ϵ, then 

[ϕ] = 
d − 2 

= 1 − 
ϵ
, [λ] = ϵ, (15)

2 2 
for ϵ ≪ 1. Then we have 

βα = −ϵλ + cλ2 + . . . , (16) 

and so, the fixed point is given by 
ϵ 

λ∗ = 
c 
≪ 1. (17) 

This fixed point is infinitesimally close to the Gaussian fixed point and can be studied using perturbation theory. 
We now conclude our discussion of the Wilsonian approach to renormalization. Our discussion has been more 
focused on the conceptual picture, rather than the explicity calculation. The Wilsonian approach is conceptually 
very appealing, but technically very awkward, as the couplings depend on the scale. We want to find how to see it 
from the conventional approach. 

5.3: BETA-FUNCTIONS FROM THE TRADITIONAL APPROACH 

We recall the procedure for renormalization, for example in ϕ3−theory. 

1. Firstly, we have the Lagrangian 

L (ϕB , gB ,mB ) = L (ϕ, g, m) + Lct, (18) 
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where 
ϵ 

L = − 
1

2 
(∂ϕ)

2 − 
1

2 
m 2ϕ2 + 

g 
6 
µ 2 ϕ3 (19) 

and 

Lct = − 
2

1 
A (∂ϕ)2 − 

2

1 
Bm2ϕ2 + 

g 
6 
µ 2 

ϵ 
Cϕ3 . (20) 

2. We impose the following renormalization conditions to determine the counter terms: 

Π(k2) = (21)
k 

Π(k2 = −m 2) = 0 (Physical mass condition) 

Π′(k2 = −m 2) = 0 (Physical field condition) 

k2 

V (k1, k2, k3) = (22)
k3 

k1 

V (0, 0, 0) = g (Physical coupling condition) (23) 

3. All physical observables can be expressed in terms of m2 and g. 

We consider more explicitly the one-loop expression for Π(k2) and V (k1, k2, k3) : 

Π(k2) = − 
α 
[( 

2 
+ 1

)( 
k2 

+ m 2
) 

+ 
ˆ 1 

dx D log 

( 
4πµ2 )] 

− Ak2 − Bm2 , (24)
2 ϵ 6 0 e� D 

2 

where D ≡ x(1 − x)k2 + m2, α ≡ 
(4
g
β)3 , and [ ]

1 α 2 
V (k1, k2, k3) = 1 + + K + C, (25) 

g 2 ϵ 

where K = K(m2, k1, k2, k3, µ). The explicit form of this function is not important here. In order to cancel the 
divergences, we require 

α 
A = + a,−

6ϵ 
α 

B = + b,− 
ϵ 
α 

C = + c.− 
ϵ 

where a, b and c are finite constants determined by the renormalization conditions. Therefore, Π(k2) and V (k1, k2, k3) 
are independent of the auxillary scale µ and depend only on m2 and g. But we can actually choose a, b and c 
arbitrarily, and physical observables will be finite. The previously stated renormalization conditions will generally 
not be satisfied, and so m2, ϕ and g are no longer the physical mass, field and couplings. They can be interpreted 
as parameters of the Lagrangian. The conditions given by 

Π(k2 = −mphys
2 ) = 0, 

Π′(k2 2 = −mphys) = 0, 

V (0, 0, 0) = gphys, 

and are now solved by general 

mphys = mphys(m 2 , g), 

ϕphys = ϕphys(m 2, g, ϕ), 

gphys = gphys(m 2 , g), 
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which are all finite relations. For example, if we set 0 = a = b = c, we find 

gphys = g 
[
1 + 

α 
2 
K(m 2 , µ; ki = 0)

] 
, (26) 

where 

K = 
ˆ 1 

0 
dx1dx2dx3 δ(x1 + x2 + x3 − 1) log 

( 
4πµ2 

e� D̃ 

) 

, (27) 

with 
D̃ ≡ m 2 + x2x3k

2 
1 + x1x3k

2 
2 + x1x2k

2 
3, (28) 

and so 

gphys = g 

[
1 + 

αx 
2 

log 

( 
4πµ2 

m2 

)] 

, (29) 

where x is a numerical constant. A similar result holds for m2 We note that, in general, the µ−dependence does phys. 
not disappear in such relations. In practice, we choose µ, and from mphys and gphys, that is, from the measured 
quantities, we determine g and m and hence all other observables. The physical observables, of course, like mphys 

and gphys do not depend on µ. So we have g(µ) and m2(µ), and 

L (ϕB , gB ,mB ) = L (ϕ, g, m) + Lct. (30) 

Here, the left-hand side is µ-independent. The splitting on the right-hand side requires introducing a scale µ. ϕ, 
g and m2 should be µ−dependent, so that the physical observables are µ−independent, but the finite part of the 
split is arbitrary. A different choice of a,b and c is a different choice of scheme: the one we have been using until 
now is the on-shell scheme. Different schemes give different g(µ), ϕ(µ) and m2(µ). Again, the physics should not 
depend on such a choice, corresponding to the different ways of doing the splitting. 
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