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Firstly, we will summarize our previous results. We start with a bare Lagrangian, ∑ 
L [Λ0, ϕ] = gi 

(0)
Oi.	 (1) 

i 

The path integral 

Z = 
ˆ

Dϕ e− ́
 
dd xL [Λ0] (2) 

k<Λ0 

describes all the physics below the cutoff Λ0. Most often we are interested in physics at some energy scale E ≪ Λ0. 
L [Λ0] is not convenient to use, as it contains the degrees of freedom ϕ(k) : E < k < Λ0 which are not directly 
related to the physics at the scale E. However, we cannot simply discard them, as they have indirect effects, which 
can be taken into account by integrating them out. We write ϕ(k) = ϕΛ(k < Λ) + ϕ̃(Λ < k < Λ0), and 

ϕ,Λ0]Z0 = 
ˆ

DϕΛ(k) 
ˆ

Dϕ̃(k) e−S[ϕ�+˜
= 
ˆ

DϕΛ(k) e
−S[ϕ�,Λ], (3) 

k<Λ Λ<k<Λ0 k<Λ 

´ ∑	 ({ } )
where S [ϕΛ, Λ] = ddx i gi(Λ)Oi, gi = gi gi 

(0) 
, Λ0; Λ . By varying Λ, we obtain a continuous family of 

S [ϕΛ, Λ] or {gi(Λ)} . This is the renormalization group flow. 

Figure 1: The renormalization flow from the cutoff Λ0 in the ultraviolet to a cutoff Λ to study processes at an 
energy scale E in the infrared region. 

Infinitesimally, we have 
dSΛ dλi

Λ = F (SΛ), Λ = βi ({λj (Λ)}) ,	 (4) 
dΛ dΛ 

where λi = giΛ−δi . The process means that all SΛ should describe the same low-energy physics. By dimensional 
analysis, we expect that for Λ ≪ 1,Λ0 ( )

Λ −(d−∆i) 

λi(Λ) ∼ λi(Λ0) ,	 (5) 
Λ0 

and so we have three cases:	  ∆i < d relevant, 

λi : ∆i = d marginal, (6) 
∆i > d irrelevant. 

We expect the initial values of irrelevant couplings should not be important for Λ −→ 0. This rough argument can Λ0 

be substantiated by analyzing the flow equation in detail. It turns out that the flow equation can be written in a 
closed form, as we showed in the last lecture: 

S [ϕΛ, Λ] = S0 [ϕΛ, Λ] + Sint [ϕΛ, Λ] ,	 (7) 
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Figure 2: The propagator GΛ(k) = 1 κΛ(k) has a cutoff around k ∼ Λ.k2 

where S0 = 1 
´ 

d4k ϕ(k)ϕ(−k)G−1(k). If GΛ = k
1 
2 , we have S0 = 1 

´ 
d4x (∂ϕ)2 . We considered the case GΛ = 2 (2π)4 Λ 2


1 k
κΛ(k), where κ provides a cut-off at k ∼ Λ. An example is a sharp cutoff κΛ(k) = Θ(1 − ). This means ϕ(k)k2 Λ 
with k > Λ do not propagate, and there is no need to impose k < Λ explicitly in the path integral. Requiring the 
partition function to be independent of the choice of Λ led to the equation 

d 1 
ˆ 

d4k dGΛ(k) 
[ 

δSI δSI δ2SI 
]

Λ SI = 4 Λ . (8) 
dΛ 2 (2π) dΛ δϕ(k) δϕ(−k) 

− 
δϕ(k)δϕ(−k) 

Remarks: 

1. This equation is exact, and fully non-perturbative. 

2. Λ dG� is only supported near a thin shell of momentum around Λ. In fact, for GΛ = Θ(1 − k ), we have dΛ Λ 

Λ dG� ∝ δ(k − Λ). Physically, this reflects that the flow equation is obtained by integrating out the dΛ 
degrees of freedom around Λ. 

3. Expanding SI [ϕ, Λ] in momentum space as 

∑ ∏ 
SI [ϕ, Λ] = 

�

n

1

! 

ˆ ( 
n

(2

dd

π

k

)

i 
4 

) 

(2π)4δ(d)(k1 + k2 + . . . + kn) × g(k1, . . . , kn; Λ)ϕ(k1) . . . ϕ(kn). (9) 
n=2 i=1 

(8) requires that 

d dGΛ(p) 1 d4q dGΛ
Λ 
dΛ 

g(k1, . . . kn; Λ) = 
∑ 

g(−p, I1; Λ)Λ 
dΛ 

g(p, I2; Λ) − 
2 

ˆ 
(2π)

Λ 
dΛ 

g(q, −q, k1, . . . , kn; Λ) 4 
{I1,I2} ∑ (10) 

where p = ki, and I1, I2 are disjoint subsets of momenta such that I1 ∪ I2 = {k1, . . . , kn} .∑ ki�I1 

{I1,I2} is a sum over all possible ways to separate {k1, . . . , kn} into groups. Diagramatically, this is 
shown in figure 3. 

This corresponds to integrating out a tree-level diagram and a one-loop momentum diagram respectively. 

3. We can expand SI [ϕ, Λ] in coordinate space: 
ˆ ∑ 

SI [ϕ, Λ] = d4 x gi(Λ)O
i(x), (11) 

i 

where the Oi form a complete set of local operators. From (8), we obtain 

Λ 
dgi 

= β̃i
j gj + β̃i

jk gj gk, (12)
dΛ


with β̃i
i = 0. Using dimensionless couplings, λi(Λ) = gi(Λ)Λ−(d−∆i), we find


βi ≡ Λ 
dλi 

= βi
j λj + βi

jk λj λk, (13)
dΛ 
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Figure 3: Diagramatic representation of (10), where the crossed vertex represents Λ dG� (p).dΛ 

where β j = (∆i − d) δ j + β̃i
j , and the β̃ j has no diagonal term. We see how this corresponds to the i i	 i 

cases    

∆i > d damping, 

∆i = 0 marginal, (14) 

∆i < d growth. 

4.	 The flow equation, (8), and thus the resulting β-functions, are not unique. It can be written in many 
other, equivalent forms by using field redefinitions: 

ϕ(x) −→ ϕ(x) + aϕ2(x) + bϕ3(x) + c (∂ϕ)2 
+ . . . .	 (15) 

Such field redefinitions lead to redefinitions of the couplings, but they should not change the physical 
observables. There is also a scheme dependence on the choice of cutoff functions, κΛ(k). The equations 
(12) and (13) are an infinite number of coupled first-order differential equations. It is quite complicated 
to analyze them, and often requires the development of approximation methods. 

Let us consider some general features of the flow: 

1.	 Separate the couplings, as before, as {λi} = {ρa} + {κα} , where {ρa} are the relevant and marginal 
couplings, and {κα} are the irrelevant couplings. Then, for a generic theory with all λ(0) ∼ O(1) at Λ0,i 
we have for Λ ≪ 1, assuming the {λi} do not become too large, that the {κα} only depend on the {ρa}.Λ0 

For example, if we consider two couplings, λ4 and λ6, for terms of the form ϕ4 and ϕ6 respectively, we 
have 

dλ4
Λ =	 λ6 + . . . , 
dΛ 
dλ6

Λ =	 2λ6 − λ4
2 + . . . 

dΛ 

The first term in the flow equation for λ6 provides a damping when going into the infrared regime. 

Figure 4: Damping and renormalization flow into the point λ4 = λ6 = 0 for the irrelevant coupling λ6 and the 
marginally irrelevant coupling λ4. 

2
4 

2
4λ

is given by β4 = Λ dλ4 = λdΛ 
Λ 0, λ6 → λ6 = λ6(λ4) ≈

marginally irrelevant. 
+ O(λ3

4), and so λ4 isThe flow of λ4as .Λ0 
→ 2 2 
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We can now make the connection to the standard renormalization procedure. We consider the ϕ4-Lagrangian, 

L = − 
1 
2 
(∂ϕ)

2 − 
1 
2 
m 2 

physϕ
2 − 

1 
4 
λ
(phys) 
4 ϕ4 + Lct, (16) 

where m2 and λ4 are renormalized physical quantities which can be measure experimentally. They should be 
interpreted as being defined at a specific infrared scale. For example, 

λ
(phys) 
4 = λ4(Λ = 0). (17) 

(phys) 2We now keep λ4 and mphys fixed and take the limit of the cutoff Λ0 −→ ∞. All physical observables only 

depend on the renormalized quantities. In particular, λ(0)
4 (Λ0) = 0, ̸ λ

(0)
6 = 0. That is, we start along the horizontal 

axis. The Wilsonian approach tells us that such an initial condition is not important. Also note that λ6 is not zero 
in the infrared, it is just determined by λ4. λ6 is related to six-particle scatterings, which of course have non-zero 
amplitude. 
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