8.324 Relativistic Quantum Field Theory II

MIT OpenCourseWare Lecture Notes
Hong Liu, Fall 2010

Lecture 21

5.1: RENORMALIZATION GROUP FLOW

Consider the bare action defined at a scale Λ_{0} :

$$
\begin{equation*}
S\left[\Lambda_{0}\right]=\int^{\Lambda_{0}} d^{d} x \frac{1}{2}(\partial \phi)^{2}+\sum_{i} g_{i}^{(0)} O_{i} \tag{1}
\end{equation*}
$$

where O_{i} is a complete set of local operators formed from ϕ. The theory is specified by the set $\left\{g_{i}^{(0)}\right\}$. As explained in the previous lecture, we can change the cutoff scale to some $\Lambda<\Lambda_{0}$ by integrating out the degrees of freedom in the interval $\left(\Lambda, \Lambda_{0}\right)$. This gives

$$
\begin{equation*}
S[\Lambda]=\int^{\Lambda} d^{d} x \frac{1}{2}(\partial \phi)^{2}+\sum_{i} g_{i}(\Lambda) O_{i} \tag{2}
\end{equation*}
$$

after redefining ϕ to absorb the field renormalization factor Z. This theory is specified by the set $\left\{g_{i}(\Lambda)\right\}$. Similarly, at another scale $\Lambda^{\prime}<\Lambda$, we obtain $S\left[\Lambda^{\prime}\right]$, described by $\left\{g_{i}\left(\Lambda^{\prime}\right)\right\}$. These three actions, $S_{\Lambda_{0}}, S_{\Lambda}$ and $S_{\Lambda^{\prime}}$, should all describe the same physics at an energy scale $E<\Lambda^{\prime}<\Lambda<\Lambda_{0}$. The relations between them can be found by integrating out the degrees of freedom explicitly in the path integral, giving

$$
\begin{aligned}
g_{i}(\Lambda) & =g_{i}\left(g_{i}^{(0)}, \Lambda_{0} ; \Lambda\right) \\
g_{i}\left(\Lambda^{\prime}\right) & =g_{i}\left(g_{i}^{(0)}, \Lambda_{0} ; \Lambda^{\prime}\right) \\
& =g_{i}^{\prime}\left(g_{i}(\Lambda), \Lambda ; \Lambda^{\prime}\right)
\end{aligned}
$$

This process describes the renormalization group transformations, or the renormalization group flow: transformations between couplings at different scales to ensure they describe the same low energy physics. If we consider, for

Figure 1: The renormalization flow as the flow in the space of all possible coupling parameterizations to ensure the same low-energy physics at different scales.
simplicity, the dimensionless couplings $\left\{\lambda_{i}(\Lambda)\right\}$ defined by $\lambda_{i} \equiv g_{i} \Lambda^{-\delta_{i}}$, differentiating gives

$$
\begin{equation*}
\Lambda \frac{d \lambda_{i}}{d \Lambda}=\beta_{i}\left(\left\{\lambda_{j}(\Lambda)\right\}\right) \tag{3}
\end{equation*}
$$

where $\beta_{i}\left(\left\{\lambda_{j}(\Lambda)\right\}\right)=\left.\frac{d}{d \ln \Lambda} \lambda_{i}\left(\left\{\lambda_{j}(\Lambda)\right\}, Z\right)\right|_{Z=1}$. It is important to note that the β_{i} are only functions of the dimensionless coupling constants $\left\{\lambda_{j}(\Lambda)\right\}$: they do not depend on Λ explicitly, as can be seen by considering
integrating out a fraction of the highest-energy modes in the path integral. The β-functions give the tangent vector of the flow, and depend only on the values of $\left\{\lambda_{j}\right\}$. Under a relabeling of couplings,

$$
\begin{equation*}
\tilde{\lambda}_{i}=\tilde{\lambda}_{i}\left(\left\{\lambda_{j}\right\}\right) \tag{4}
\end{equation*}
$$

we have that

$$
\begin{equation*}
\tilde{\beta}_{i}(\{\tilde{\lambda}\})=\sum_{j} \frac{d \tilde{\lambda}_{i}}{d \lambda_{j}} \beta_{j}(\{\lambda\}) \tag{5}
\end{equation*}
$$

The β-functions can be computed explicitly from the path integral:

$$
\begin{aligned}
Z[J] & =\int_{|k|<\Lambda} \mathfrak{D} \phi e^{-S\left[\Lambda, \phi_{\Lambda}\right]-\int d^{d} x J \phi} \\
& =\int_{|k|<\Lambda^{\prime}} \mathfrak{D} \phi_{\Lambda^{\prime}}(k) \int_{\Lambda^{\prime}<|k|<\Lambda} \mathfrak{D} \tilde{\phi}(k) e^{-S\left[\phi_{\Lambda^{\prime}}+\tilde{\phi}, \Lambda\right]-\int d^{d} x J\left(\phi_{\Lambda}+\tilde{\phi}\right)} \\
& =\int_{|k|<\Lambda} \mathfrak{D} \phi_{\Lambda^{\prime}}(k) e^{-S\left[\phi_{\Lambda^{\prime}}, \Lambda^{\prime}\right]-\int d^{d} x J \phi_{\Lambda^{\prime}}}
\end{aligned}
$$

Now, if we let $\Lambda^{\prime} \longrightarrow \Lambda-\delta \Lambda, S[\Lambda-\delta \Lambda]=S[\Lambda]+\delta S[\Lambda]$, we have

$$
\begin{equation*}
\Lambda \frac{d S_{\Lambda}}{d \Lambda}=F\left(S_{\Lambda}\right) \tag{6}
\end{equation*}
$$

Expanding

$$
\begin{equation*}
S_{\Lambda}=\sum_{i} g_{i} O_{i}=\sum_{i} \lambda_{i} \Lambda^{\delta_{i}} O_{i} \tag{7}
\end{equation*}
$$

(6) gives us the β-functions for all couplings. As an example, let us consider the case of a free scalar field in four dimensions, with a cut-off at a scale Λ. Then, we have

$$
\begin{equation*}
S_{\Lambda}[\phi]=\int_{k<\Lambda} \frac{d^{4} k}{(2 \pi)^{4}} f(k) \phi_{\Lambda}^{*}(k) \phi_{\Lambda}(k) \tag{8}
\end{equation*}
$$

We expand $f(k)$ as a power series in k :

$$
\begin{aligned}
f(k) & =m_{0}^{2}+k^{2}+r_{4} k^{4}+\ldots \\
& =\lambda_{m}(\Lambda) \Lambda^{2}+k^{2}+\frac{\tilde{r}_{4}(\Lambda)}{\Lambda^{2}} k^{4}+\ldots
\end{aligned}
$$

where the coefficient of k^{2} can be chosen to one with a suitable normalization for ϕ_{Λ}. Here, $\lambda_{m}(\Lambda), \tilde{r}_{4}(\Lambda), \ldots$ are dimensionless couplings: $\left[\phi^{2}\right]=2,\left[\left(\partial^{2} \phi\right)^{2}\right]=6$, and so $\delta_{m}=2, \delta_{r_{4}}=-2$, for example. We now let $\phi_{\Lambda}(k)=\phi_{\Lambda^{\prime}}(k)+\tilde{\phi}(k)$ with $\tilde{\phi}(k)$ supported for $k \in\left(\Lambda^{\prime}, \Lambda\right)$ and $\phi_{\Lambda^{\prime}}$ supported for $k \in\left(0, \Lambda^{\prime}\right)$. Then we have that

$$
\begin{equation*}
S_{\Lambda}\left[\phi_{\Lambda}\right]=S_{\Lambda}\left[\phi_{\Lambda^{\prime}}\right]+S_{\Lambda}[\tilde{\phi}]+2 \int \frac{d^{4} k}{(2 \pi)^{4}} f(k) \phi_{\Lambda^{\prime}}(k) \tilde{\phi}(k) \tag{9}
\end{equation*}
$$

where the last term is zero as $\phi_{\Lambda^{\prime}}$ and ϕ_{k} have disjoint support. Integrating out $\tilde{\phi}$ only generates an overall constant for the path integral, and so

$$
\begin{equation*}
S_{\Lambda^{\prime}}\left[\phi_{\Lambda^{\prime}}\right]=S_{\Lambda}\left[\phi_{\Lambda^{\prime}}\right]=\int_{k<\Lambda^{\prime}} \frac{d^{4} k}{(2 \pi)} f(k) \phi_{\Lambda^{\prime}}^{*}(k) \phi_{\Lambda^{\prime}}(k) \tag{10}
\end{equation*}
$$

where $f(k)$ has not changed. That is,

$$
\begin{aligned}
f(k) & =m_{0}^{2}+k^{2}+r_{4} k^{4}+\ldots \\
& =\lambda_{m}\left(\Lambda^{\prime}\right) \Lambda^{\prime 2}+k^{2}+\frac{\tilde{r}_{4}\left(\Lambda^{\prime}\right)}{\Lambda^{\prime 2}} k^{4}+\ldots
\end{aligned}
$$

and we conclude that

$$
\begin{aligned}
\lambda_{m}\left(\Lambda^{\prime}\right) & =\lambda_{m}(\Lambda)\left(\frac{\Lambda}{\Lambda^{\prime}}\right)^{2}=\lambda_{m}(\Lambda)\left(\frac{\Lambda}{\Lambda^{\prime}}\right)^{-\delta_{m}} \quad \text { is a relevant operator } \\
\tilde{r}_{4}\left(\Lambda^{\prime}\right) & =\tilde{r}_{4}(\Lambda)\left(\frac{\Lambda}{\Lambda^{\prime}}\right)^{-2}=\tilde{r}_{4}(\Lambda)\left(\frac{\Lambda}{\Lambda^{\prime}}\right)^{-\delta_{m}} \quad \text { is an irrelevant operator. }
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \beta_{m}=\left.\Lambda^{\prime} \frac{d \lambda_{m}\left(\Lambda^{\prime}\right)}{d \Lambda^{\prime}}\right|_{\Lambda^{\prime} \rightarrow \Lambda}=-2 \lambda_{m}=-\delta_{m} \lambda_{m}<0 \\
& \beta_{r_{4}}=\left.\Lambda^{\prime} \frac{d \tilde{r}_{4}\left(\Lambda^{\prime}\right)}{d \Lambda^{\prime}}\right|_{\Lambda^{\prime} \rightarrow \Lambda}=2 \tilde{r}_{4}=-\delta_{m} \tilde{r}_{4}>0
\end{aligned}
$$

We note that dimensional quantities like m^{2} and r_{4} do not change at all in this instance, but that the dimensionless couplings flow as they are defined with respect to the cut-off scale. This does reflect the right physics: the relative importance of each term in $f(k)$ as we go to lower energies, or smaller k . That is,

$$
\begin{gathered}
\frac{m_{0}^{2}}{k^{2}} \text { becomes larger as } k \text { becomes smaller, } \\
\frac{r_{4} k^{4}}{k^{2}} \text { becomes smaller as } k \text { becomes smaller. }
\end{gathered}
$$

We will now derive the full flow equation for $S_{\Lambda}[\phi]$. For this purpose, we write it as

$$
\begin{equation*}
S[\phi, \Lambda]=\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} G_{\Lambda}^{-1}(k) \phi(k) \phi(-k)+S_{I}[\phi, \Lambda]+U(\Lambda) \tag{11}
\end{equation*}
$$

where $U(\Lambda)$ is a cosmological constant, and the propagator $G_{\Lambda}(k)$ satisfies

$$
G_{\Lambda}(k)= \begin{cases}\frac{1}{k^{2}} & k \ll \Lambda, \tag{12}\\ 0 & k \gg \Lambda .\end{cases}
$$

We have that

$$
\begin{equation*}
Z=\int \mathfrak{D} \phi(k) e^{-S_{0}[\phi, \Lambda]-\tilde{S}_{I}[\phi, \Lambda]} \tag{13}
\end{equation*}
$$

where $\tilde{S}_{I}=S_{I}+U$. There is now no need to impose an explicit cut-off when integrating over $\phi(k)$. It is clearly

Figure 2: The propagator $G_{\Lambda}(k)=\frac{1}{k^{2}} \kappa_{\Lambda}(k)$ has a cut-off around $k \sim \Lambda$.
very complicated to obtain the flow equation for $\tilde{S}_{I}[\phi, \Lambda]$ by evaluating the path integral directly. We will instead require

$$
\begin{equation*}
\Lambda \frac{d Z[\Lambda]}{d \Lambda}=0 \tag{14}
\end{equation*}
$$

which is an equivalent statement. From this, we have

$$
\begin{equation*}
\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}}\left\langle\phi(-k) \phi(k) e^{-\tilde{S}_{I}}\right\rangle \Lambda \frac{d G_{\Lambda}^{-1}}{d \Lambda}=\left\langle\Lambda \partial_{\Lambda} e^{-\tilde{S}_{I}}\right\rangle \tag{15}
\end{equation*}
$$

Here, $\langle\ldots\rangle=\frac{1}{Z_{0}} \int \mathfrak{D} \phi \ldots e^{-S_{0}}$, with $Z_{0}=\int \mathfrak{D} \phi e^{-S_{0}}$. We would like to express the left-hand side of (15) more directly in terms of S_{I}. For this purpose, consider

$$
\begin{equation*}
0=\int \mathfrak{D} \phi \frac{\delta}{\delta \phi(k)}\left(\phi(k) e^{-S_{0}-\tilde{S}_{I}}\right) \tag{16}
\end{equation*}
$$

From this, we have that

$$
\begin{equation*}
(2 \pi)^{4} \delta^{(4)}(0)\left\langle e^{-\tilde{S}_{I}}\right\rangle-G_{\Lambda}^{-1}\left\langle\phi(k) \phi(-k) e^{-\tilde{S}_{I}}\right\rangle+\left\langle\phi(k) \frac{\delta}{\delta \phi(k)} e^{-\tilde{S}_{I}}\right\rangle=0 \tag{17}
\end{equation*}
$$

The last term in this equation is still complicated. Consider further

$$
\begin{equation*}
0=\int \mathfrak{D} \phi \frac{\delta^{2}}{\delta \phi(k) \delta \phi(-k)}\left(e^{-S_{0}-\tilde{S}_{I}}\right) \tag{18}
\end{equation*}
$$

From this, we have

$$
\begin{equation*}
(2 \pi)^{4} \delta^{(4)}(0) G_{\Lambda}^{-1}\left\langle e^{-\tilde{S}_{I}}\right\rangle-\left(G_{\Lambda}^{-1}\right)^{2}\left\langle\phi(k) \phi(-k) e^{-\tilde{S}_{I}}\right\rangle-2 G_{\Lambda}^{-1}\left\langle\phi(k) \frac{\delta}{\delta \phi(k)} e^{-\tilde{S}_{I}}\right\rangle+\left\langle\frac{\delta^{2}}{\delta \phi(k) \delta \phi(-k)} e^{-\tilde{S}_{I}}\right\rangle=0 \tag{19}
\end{equation*}
$$

If we multiply 17 by $2 G_{\Lambda}^{-1}$ and add the result to (19), we obtain

$$
\begin{equation*}
(2 \pi)^{4} \delta^{(4)}(0) G_{\Lambda}^{-1}\left\langle e^{-\tilde{S}_{I}}\right\rangle-\left(G_{\Lambda}^{-1}\right)^{2}\left\langle\phi(k) \phi(-k) e^{-\tilde{S}_{I}}\right\rangle+\left\langle\frac{\delta^{2}}{\delta \phi(k) \delta \phi(-k)} e^{-\tilde{S}_{I}}\right\rangle=0 \tag{20}
\end{equation*}
$$

Eliminating $\left\langle\phi(k) \phi(-k) e^{-\tilde{S}_{I}}\right\rangle$ between (15) and (20) gives

$$
\begin{aligned}
\left\langle\Lambda \frac{d}{d \Lambda} e^{-S_{I}-U}\right\rangle= & -\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \Lambda \frac{d G_{\Lambda}}{d \Lambda}\left\langle\frac{\delta^{2}}{\delta \phi(k) \delta \phi(-k)} e^{-S_{I}-U}\right\rangle \\
& -\frac{1}{2}(2 \pi)^{4} \delta^{(4)}(0) \int \frac{d^{4} k}{(2 \pi)^{4}} \Lambda \frac{d \log G_{\Lambda}}{d \Lambda}\left\langle e^{-S_{I}-U}\right\rangle
\end{aligned}
$$

Here, the second term is a constant, and so we have

$$
\begin{equation*}
\Lambda \frac{d}{d \Lambda} U=\frac{1}{2} V_{4} \Lambda \frac{d}{d \Lambda} \int \frac{d^{4} k}{(2 \pi)^{4}} \log G_{\Lambda}(k) \tag{21}
\end{equation*}
$$

where $V_{4}=(2 \pi)^{4} \delta^{(4)}(0)$, and so

$$
\begin{equation*}
U(\Lambda)=U_{0}+\frac{1}{2} V_{4} \int \frac{d^{4} k}{(2 \pi)^{4}} \log G_{\Lambda}(k) \tag{22}
\end{equation*}
$$

where U_{0} is independent of Λ, and

$$
\begin{equation*}
\Lambda \frac{d}{d \Lambda} e^{-S_{I}}=-\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \Lambda \frac{d G_{\Lambda}(k)}{d \Lambda} \frac{\delta^{2}}{\delta \phi(k) \delta \phi(-k)} e^{-S_{I}} \tag{23}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\Lambda \frac{d}{d \Lambda} S_{I}=\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \Lambda \frac{d G_{\Lambda}(k)}{d \Lambda}\left[\frac{\delta S_{I}}{\delta \phi(k)} \frac{\delta S_{I}}{\delta \phi(-k)}-\frac{\delta^{2} S_{I}}{\delta \phi(k) \delta \phi(-k)}\right] \tag{24}
\end{equation*}
$$

MIT OpenCourseWare
http://ocw.mit.edu

8.324 Relativistic Quantum Field Theory II

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

