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Lecture 16 

Firstly, we summarize the results of the vertex correction from the previous lecture: 

Γµ 
1 (k1, k2) ≡ 

= γµA(q 2) + i(k1 + k2)
µB(q 2)


= eγµF1(q 2) − 
σµν qν F2(q

2) 
, (1)


2m 

where eF1 = A + 2mB and eF2 = −2mB. We showed that F2(0) = − 2m B(0) = α = 0.0011614.., where e 2π 
e 2 1α ≡ 4π ≈ 137 . The integral for Γµ is, in fact, infrared divergent. As l −→ 0,1 

(k1 + l)2 + m 2	 = k1
2 + m 2 + 2k1.l + l2 

= 2k1.l + l2 −→ 0, 

and so Γ1 ∼ 
´ 
d4l 1 is divergent. This is due to soft photon interactions, and this effect is in fact cancelled by l4 

including the soft emissions: 

q 

k1 

k2 

µ 

k1 + l 

k2 + l 

l 

+ + .	 (2) 

The explanation is that it is only reasonable to calculate measurable cross-sections: ( ) ( ) ( )
dσ dσ dσ 
dΩ

= 
dΩ

(α → β) + 
dΩ

(α → β + soft photons) .	 (3) 
measured 

The calculation then proceeds by imposing an infrared cut-off λ on the photon momenta. The divergences in the 
λ −→ 0 limit cancel among virtual and real soft photon emissions, and we can safely take the λ −→ 0 limit in the 
end. 

3.4: VACUUM POLARIZATION 

We will now evaluate the one-loop correction to the photon propagator, and consider the physical interpretation, 
recalling the general structure we considered in lecture 12. 

3.4.1: One-loop correction 

iΠµν (k) = 

1P I = i� 

= 
k 

q 

k 
k + q 

+ + . . . 

= (−1)(−ie)2 
ˆ 

d4q 
tr (γµS0(k + q)γν S0(q)) − i(Z3 − 1)k2P µν (4) 4	 T

(2π)
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We note that the factor of (−1) at the front comes from the fermionic loop, that the trace is over the omitted spinor 
indices, and that S0 is the electron propagator. Having now enough experience with one-loop diagrams, we will 

1 i/q+m 
omit the details of the calculation and only emphasise the new aspects. Using S0(q) = i/q−m = − q2+m2 , we first 

introduce the Feynman parameters: 

µν 2 d4p 4Nµν 

Π1 = e 
ˆ 1 

dx 
ˆ 

4 (p2 + D)2 
+ counterterm, (5) 

0 (2π)

with p ≡ q + xk, D ≡ x(1 − x)k2 + m2 − iϵ, and 

= tr	 γµ(ik/ + i/q + m)γν (i/q + m)

2
d 

4Nµν	

= tr 

[[
γµ(i/p + i(1 − x)k/ + m)γν (i

]
p/− ixk/ + m)

]
= −tr 

[
γµpγ/

ν p/
] 
+ m 2tr [γµγν ] + x(1 − x)tr [γµ / k]kγν /

+terms linear in p+terms with an odd number of γmatrices. 

We note that the trace of a term with an odd number of γ-matrices gives zero, and that 

tr [γµγν ] = 4ηµν , 

tr [γµγν γργσ] = 4(ηµν ηρσ − ηµρηνσ + ηµσηνρ). 

2
d 

Hence, disregarding irrelevant terms, we can write 

Nµν = −2pµp ν + 2x(1 − x)kµkν + (m 2 + p 2 − x(1 − x)k2)ηµν . (6) 

Secondly, we evaluate the integrals, extending to a general dimension d. We note that 

ˆ	 ˆ
ddp

pµp ν f(p 2) = 
ηµν ddp

p 2f(p 2), (7) 
(2π)

d d (2π)
d 

and so ˆ 1 ˆ	 2ddp Aηµν + p2(1 − )ηµν + 2x(1 − x)kµkν 

iΠµν (k) = 4e 2 dx 
d

d 
2 , (8) 

0 (2π) (p2 + D)

where we have set A ≡ m2 − x(1 − x)k2 . We note that the first and third terms in the numerator are logarithmically 
divergent, and the second term is quadratically divergent. We now apply a Wick rotation p0 ipd , dd iddpE 

2 2	
→ E p →

and p pE . We recall that→ 

ˆ 
ddpE	 (p2 )a 

= 
Γ(b − a − d )Γ(a + d ) 

D−(b−a− , (9)E 2 2 )

(2π)
d (pE 

2 + D)b 
(4π) Γ(b)Γ( d 

2 ) 

dd 

and so 

(1 − 
2
) 
ˆ 

ddpE p2 
E = −D 

ˆ 
ddpE 1 

2 . (10)
d (2π)

d 
(p2 + D)

2 
(2π)

d 
(p2 + D)E	 E 

Hence, the numerator of (8) can be replaced by 

(A − D)ηµν + 2x(1 − x)kµkν . (11) 

The transverse component, therefore, is given by 

−2x(1 − x)k2P µν , (12)T 

and we can write 

iΠµν (k) = −8ie2k2P µν (k) 
ˆ 1 

dx 
ˆ 

ddpE 1 − i(Z3 − 1)k2P µν 
T	 d (p2 + D)2 T 

0 (2π) E 

Γ(2 − d ) 
ˆ 1 x(1 − x)2 

0 
= −8ie2k2P µν 

T (k) dx 
(4π) 2 D2− 2

− i(Z3 − 1)k2P µν 
T . 
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ϵ 
Thirdly, we use dimensional regularization, setting d = 4 − ϵ, e → eµ 2 , 

T (k) 2 4πµ2	
µνiΠµν (k) = 

−8ie2k2P µν ˆ 1 

dx x(1 − x) 

[ 

ϵ 
− γ + log 

( )] 

− i(Z3 − 1)k2P , (13)
16π2

0 D T 

and so 
Πµν (k) = k2PT

µν Π(k2), (14) 

with 

Π(k2) = − 
π

e2

2 

ˆ 1 

dx x(1 − x)
1 
ϵ 
− 

1

2 
log 

( 

4πµ

D 
2e−γ 

) 

− (Z3 − 1). (15) 
0 

The physical field condition constrains that Π(k2 = 0) = 0, and so Z3 is fixed by 

2 ( 
2 )

e 1 1 m
Z3 = 1 − 

6π2 ϵ 
− 

2 
log 

4πµ2e−γ	
(16) 

and the final result for Π(k2) is 

Π(k2) = 
e2 ˆ 1 

dx x(1 − x) log 

(
1 + 

k2x(1 − x) 
) 

(17)
2π2

0 m2 

Remarks: 

1.	 For k2 < −4m2 , Π(k2) becomes complex. 

2.	 For more than one charged particle, we must add their respective contributions, and the smallest m 
contributes most. 

3.	 The internal propagator is given by 

2Dµν (q) 
−ie2 ηµν 

e → 
q2 − iϵ 1 − Π(q2) 

= 
−ie2ηµν 

(1 + Π(q 2) + . . .). 
q2 − iϵ 

We see that for q2 ≫ m2 , a large spacelike momentum, from (17) we have 

Π(q 2) ≈ 
2

e

π

2

2 
log 

m

q2

2 

ˆ
0

1 

dx x(1 − x) 

α q2 

= log ,
3π m2 

2 
where α = 4

e
π . Then, the internal propagator goes as 

e2 e2 1 e2(q) 
q2 − iϵ 

−→ 
1 − Π(q2) q2 − iϵ 

≡ 
q2 − iϵ

, (18) 

ewith e2(q) = 
2 

the running coupling constant. 2

1− 3

α
π log q

2
m

3.4.2: Physical implication 

Consider scattering of two charged particles with coupling constants e1 and e2, for example, in the process e− + 
µ− −→ e− + µ− : 

1′ 2′ 1′ 2′ 

e e e1 e2 + e1 e2 + . . . .	 (19) 
q 

1 2 1 2 
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∣∣ ∣∣

to lowest order, where e is the coupling constant associated with the lightest intermediate particle. 

S(1, 2 −→ 1′ , 2′) = (−ie)2 ū1′ (p′ 1)γ
µu1(p1)Dµν (q)ū2′ (p′ 2)γ

ν u2(p2), 

where 
P T −i µν (q)

+ DLDµν (q) = 
q2 − iϵ 1 − Π(q2) µν (q), (20) 

and P T , q = p′ = p′ 2 − p2. Note that ¯ 2)γ
ν u2(p2)qν = ¯ 2)(/p

′ p2)u2(p2) = 0. We now µν = ηµν − qµ 

q2 
qν 

1 − p1 u2′ (p′ u2′ (p′ 
2 
− /

want to consider corrections to the Coulomb potential. We consider the low energy, non-relativistic limit, where 
we derive most of our intuition about electromagnetism from, and where the notion of a potential makes most 
sense. The lowest two diagrams drawn above correspond to 

1′ 2′ 

e1e2 
= 

q2 
ηµν , 

1 2 

1′ 2′ 

e1e2 
= 

q2 
Π(q 2)ηµν . (21) 

1 2 

q 
e1, µ e2, � 

e1, µ e e e2, � 

In the non-relativistic limit,
0 ∼ |vq⃗| ≪ |q⃗| , q 2 ≈ q⃗ 2 . (22)q 

In this case, one-photon exchange corresponds to the Born approximation: 

e1e2 
ˆ

= d3r⃗ e−iq⃗.r⃗V0(r⃗), (23)
q⃗2 

where V0(r⃗) = 
4

e

π 
1e

|⃗r
2 

| 
is the Coulomb potential. The one-loop correction is given by e1q⃗

e2 Π(q⃗2), where, from (17) 2 

dx x(1 − x) log

(
⃗2q

1 + 
m2 

x(1 − x)

)
, (24) 

2 ˆ 1 

0 

e
Π(q⃗ 2) = 

2π2 

and the term provides a correction to the Coulomb potential 

δV (r⃗) = e1e2 

ˆ 
d3r⃗ e−iq⃗.r⃗ Π(

q⃗

q⃗
2

2) 
. (25) 

From now on, we will for convenience write q ≡ |⃗q|, r ≡ ∥r⃗∥. The angular integral is given by 

2π 
ˆ π 

dθ sin θeiqr cos θ 
3

(2π) 0 

= 
1 1 

4π2 iqr

(
eiqr − e−iqr

)
, 

and so we find for the correction to the Coulomb potential 

e1e2 
ˆ ∞ 1 

= dq
4π2

0

( )
Π(q⃗ 2)iqr − e−iqreδV (r⃗) 

iqr

e1e2 
ˆ ∞ 1 

= dq
4π2 

iqrΠ(q⃗ 2).e
iqr −∞ 
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Re(s)

Im(s)

ia

Figure 1: Clockwise contour for the integral in dz in (26). The semi-circular arc is taken to infinity and gives a 
vanishing contribution. 

mrIf we now let z ≡ qr, a ≡ √
x(1−x) 

≥ 2mr, the result reduces to 

2 ˆ 1 ˆ iz (
2 )e1e2 e	 ∞ e z

δV (r⃗) = 
8π4 ir 0 

dx x(1 − x) dz 
z 

log 1 + 
a2 

.	 (26) 
−∞( )´ iz∞ 

dz e 
−∞ 

2 
1 + a

z 
2The integral in dz, I log , can be computed using the complex contour shown in figure 1, = z 

giving 
ˆ ∞ e−λ 

I = 2 dλ iπ 
λa ˆ ∞ e−aλ 

= 2iπ dλ 
λ1 

→ aλ. So, our result for the correction to the Coulomb potential is given by 

2 ˆ 1 ˆ 
mr 

δV (r⃗) = 
e1e2 e

dx x(1 − x) 
∞ dλ 

e
−λ √

x(1−x) 

4π π2
0 1 λ 

e1e2 ≡ 
4π

Z(mr) 

after setting λ 

Remarks: 

1.	 When mr ≫ 1, we can evaluate the integral in the saddle-point approximation, using integration by 
parts, 

e1e2 e2 e−2mr 

δV (r) = + . . . . (27)334π 16π 2 (mr) 2 

2. Z(mr) increases with decreasing r. 
off at mr = e ≪ 1, we find 

As r −→ 0, I(r) −→ ∞. If we consider putting a short-distance cut 

Z(ϵ) = 
e2 

6π2 
log 

1 
ϵ 
+ . . . , (28) 

and thus 

V (r) = 

= 

= 

V0 + δV (r) 
e1e2 

4πr 
(1 + Z(mr)) 

ẽ1(r)ẽ2(r) 
4πr 

, 

where 
1 
2ẽi(r) = ei (1 + Z(mr)) .	 (29) 
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Figure 2: Virtual electron-positron pairs form a screening effect. 

We observe that ẽi(r) −→ ∞ as r −→ 0, and ẽi(r) −→ ei as r −→ 0, with small experimental corrections. 
Physically, we can view ẽi(r = ϵ) as the bare charge, which is very large. The physical interpretation is 
that virtual electron-positron pairs screen the charge more at large distances. The screening length is 
given by rs ∼ 1 . That is, there is a negative cloud of size 1 . At large distances, the charges scale as 2m 2m 
ei ∼ e−2mr . 
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