8.324 Relativistic Quantum Field Theory II

MIT OpenCourseWare Lecture Notes
Hong Liu, Fall 2010

Lecture 16

Firstly, we summarize the results of the vertex correction from the previous lecture:

$$
\begin{align*}
\Gamma_{1}^{\mu}\left(k_{1}, k_{2}\right) & \equiv \sim_{k_{1}+l}^{k_{2}+l} \\
& =\gamma^{\mu} A\left(q^{2}\right)+i\left(k_{1}+k_{2}\right)^{\mu} B\left(q^{2}\right) \\
& =e \gamma^{\mu} F_{1}\left(q^{2}\right)-\frac{\sigma^{\mu \nu} q_{\nu} F_{2}\left(q^{2}\right)}{2 m} \tag{1}
\end{align*}
$$

where $e F_{1}=A+2 m B$ and $e F_{2}=-2 m B$. We showed that $F_{2}(0)=-\frac{2 m}{e} B(0)=\frac{\alpha}{2 \pi}=0.0011614 .$. , where $\alpha \equiv \frac{e^{2}}{4 \pi} \approx \frac{1}{137}$. The integral for Γ_{1}^{μ} is, in fact, infrared divergent. As $l \longrightarrow 0$,

$$
\begin{aligned}
\left(k_{1}+l\right)^{2}+m^{2} & =k_{1}^{2}+m^{2}+2 k_{1} \cdot l+l^{2} \\
& =2 k_{1} \cdot l+l^{2} \longrightarrow 0
\end{aligned}
$$

and so $\Gamma_{1} \sim \int d^{4} l \frac{1}{l^{4}}$ is divergent. This is due to soft photon interactions, and this effect is in fact cancelled by including the soft emissions:

The explanation is that it is only reasonable to calculate measurable cross-sections:

$$
\begin{equation*}
\left(\frac{d \sigma}{d \Omega}\right)_{\text {measured }}=\left(\frac{d \sigma}{d \Omega}\right)(\alpha \rightarrow \beta)+\left(\frac{d \sigma}{d \Omega}\right)(\alpha \rightarrow \beta+\text { soft photons }) \tag{3}
\end{equation*}
$$

The calculation then proceeds by imposing an infrared cut-off λ on the photon momenta. The divergences in the $\lambda \longrightarrow 0$ limit cancel among virtual and real soft photon emissions, and we can safely take the $\lambda \longrightarrow 0$ limit in the end.

3.4: VACUUM POLARIZATION

We will now evaluate the one-loop correction to the photon propagator, and consider the physical interpretation, recalling the general structure we considered in lecture 12.

3.4.1: One-loop correction

$$
\begin{align*}
i \Pi^{\mu \nu}(k) & =\sim \sim
\end{align*}
$$

We note that the factor of (-1) at the front comes from the fermionic loop, that the trace is over the omitted spinor indices, and that S_{0} is the electron propagator. Having now enough experience with one-loop diagrams, we will omit the details of the calculation and only emphasise the new aspects. Using $S_{0}(q)=\frac{1}{i q-m}=-\frac{i q+m}{q^{2}+m^{2}}$, we first introduce the Feynman parameters:

$$
\begin{equation*}
\Pi_{1}^{\mu \nu}=e^{2} \int_{0}^{1} d x \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{4 N^{\mu \nu}}{\left(p^{2}+D\right)^{2}}+\text { counterterm } \tag{5}
\end{equation*}
$$

with $p \equiv q+x k, D \equiv x(1-x) k^{2}+m^{2}-i \epsilon$, and

$$
\begin{aligned}
4 N^{\mu \nu} & =\operatorname{tr}\left[\gamma^{\mu}(i \not k+i \not q+m) \gamma^{\nu}(i \not q+m)\right] \\
& =\operatorname{tr}\left[\gamma^{\mu}(i \not p+i(1-x) \not k+m) \gamma^{\nu}(i \not p-i x \not k+m)\right] \\
& =-\operatorname{tr}\left[\gamma^{\mu} \not p \gamma^{\nu} \not p\right]+m^{2} \operatorname{tr}\left[\gamma^{\mu} \gamma^{\nu}\right]+x(1-x) \operatorname{tr}\left[\gamma^{\mu} \not k \gamma^{\nu} \not k\right]
\end{aligned}
$$

+ terms linear in $p+$ terms with an odd number of γ matrices.
We note that the trace of a term with an odd number of γ-matrices gives zero, and that

$$
\begin{aligned}
\operatorname{tr}\left[\gamma^{\mu} \gamma^{\nu}\right] & =4 \eta^{\mu \nu} \\
\operatorname{tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right] & =4\left(\eta^{\mu \nu} \eta^{\rho \sigma}-\eta^{\mu \rho} \eta^{\nu \sigma}+\eta^{\mu \sigma} \eta^{\nu \rho}\right)
\end{aligned}
$$

Hence, disregarding irrelevant terms, we can write

$$
\begin{equation*}
N^{\mu \nu}=-2 p^{\mu} p^{\nu}+2 x(1-x) k^{\mu} k^{\nu}+\left(m^{2}+p^{2}-x(1-x) k^{2}\right) \eta^{\mu \nu} \tag{6}
\end{equation*}
$$

Secondly, we evaluate the integrals, extending to a general dimension d. We note that

$$
\begin{equation*}
\int \frac{d^{d} p}{(2 \pi)^{d}} p^{\mu} p^{\nu} f\left(p^{2}\right)=\frac{\eta^{\mu \nu}}{d} \int \frac{d^{d} p}{(2 \pi)^{d}} p^{2} f\left(p^{2}\right) \tag{7}
\end{equation*}
$$

and so

$$
\begin{equation*}
i \Pi^{\mu \nu}(k)=4 e^{2} \int_{0}^{1} d x \int \frac{d^{d} p}{(2 \pi)^{d}} \frac{A \eta^{\mu \nu}+p^{2}\left(1-\frac{2}{d}\right) \eta^{\mu \nu}+2 x(1-x) k^{\mu} k^{\nu}}{\left(p^{2}+D\right)^{2}} \tag{8}
\end{equation*}
$$

where we have set $A \equiv m^{2}-x(1-x) k^{2}$. We note that the first and third terms in the numerator are logarithmically divergent, and the second term is quadratically divergent. We now apply a Wick rotation $p^{0} \rightarrow i p_{E}^{d}, d^{d} p \rightarrow i d^{d} p_{E}$ and $p^{2} \rightarrow p_{E}^{2}$. We recall that

$$
\begin{equation*}
\int \frac{d^{d} p_{E}}{(2 \pi)^{d}} \frac{\left(p_{E}^{2}\right)^{a}}{\left(p_{E}^{2}+D\right)^{b}}=\frac{\Gamma\left(b-a-\frac{d}{2}\right) \Gamma\left(a+\frac{d}{2}\right)}{(4 \pi)^{\frac{d}{2}} \Gamma(b) \Gamma\left(\frac{d}{2}\right)} D^{-\left(b-a-\frac{d}{2}\right)}, \tag{9}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left(1-\frac{2}{d}\right) \int \frac{d^{d} p_{E}}{(2 \pi)^{d}} \frac{p_{E}^{2}}{\left(p_{E}^{2}+D\right)^{2}}=-D \int \frac{d^{d} p_{E}}{(2 \pi)^{d}} \frac{1}{\left(p_{E}^{2}+D\right)^{2}} \tag{10}
\end{equation*}
$$

Hence, the numerator of (8) can be replaced by

$$
\begin{equation*}
(A-D) \eta^{\mu \nu}+2 x(1-x) k^{\mu} k^{\nu} \tag{11}
\end{equation*}
$$

The transverse component, therefore, is given by

$$
\begin{equation*}
-2 x(1-x) k^{2} P_{T}^{\mu \nu} \tag{12}
\end{equation*}
$$

and we can write

$$
\begin{aligned}
i \Pi^{\mu \nu}(k) & =-8 i e^{2} k^{2} P_{T}^{\mu \nu}(k) \int_{0}^{1} d x \int \frac{d^{d} p_{E}}{(2 \pi)^{d}} \frac{1}{\left(p_{E}^{2}+D\right)^{2}}-i\left(Z_{3}-1\right) k^{2} P_{T}^{\mu \nu} \\
& =-8 i e^{2} k^{2} P_{T}^{\mu \nu}(k) \frac{\Gamma\left(2-\frac{d}{2}\right)}{(4 \pi)^{\frac{d}{2}}} \int_{0}^{1} d x \frac{x(1-x)}{D^{2-\frac{d}{2}}}-i\left(Z_{3}-1\right) k^{2} P_{T}^{\mu \nu}
\end{aligned}
$$

Thirdly, we use dimensional regularization, setting $d=4-\epsilon, e \rightarrow e \mu^{\frac{\epsilon}{2}}$,

$$
\begin{equation*}
i \Pi^{\mu \nu}(k)=\frac{-8 i e^{2} k^{2} P_{T}^{\mu \nu}(k)}{16 \pi^{2}} \int_{0}^{1} d x x(1-x)\left[\frac{2}{\epsilon}-\gamma+\log \left(\frac{4 \pi \mu^{2}}{D}\right)\right]-i\left(Z_{3}-1\right) k^{2} P_{T}^{\mu \nu} \tag{13}
\end{equation*}
$$

and so

$$
\begin{equation*}
\Pi^{\mu \nu}(k)=k^{2} P_{T}^{\mu \nu} \Pi\left(k^{2}\right) \tag{14}
\end{equation*}
$$

with

$$
\begin{equation*}
\Pi\left(k^{2}\right)=-\frac{e^{2}}{\pi^{2}} \int_{0}^{1} d x x(1-x) \frac{1}{\epsilon}-\frac{1}{2} \log \left(\frac{D}{4 \pi \mu^{2} e^{-\gamma}}\right)-\left(Z_{3}-1\right) \tag{15}
\end{equation*}
$$

The physical field condition constrains that $\Pi\left(k^{2}=0\right)=0$, and so Z_{3} is fixed by

$$
\begin{equation*}
Z_{3}=1-\frac{e^{2}}{6 \pi^{2}} \frac{1}{\epsilon}-\frac{1}{2} \log \left(\frac{m^{2}}{4 \pi \mu^{2} e^{-\gamma}}\right) \tag{16}
\end{equation*}
$$

and the final result for $\Pi\left(k^{2}\right)$ is

$$
\begin{equation*}
\Pi\left(k^{2}\right)=\frac{e^{2}}{2 \pi^{2}} \int_{0}^{1} d x x(1-x) \log \left(1+\frac{k^{2} x(1-x)}{m^{2}}\right) \tag{17}
\end{equation*}
$$

Remarks:

1. For $k^{2}<-4 m^{2}, \Pi\left(k^{2}\right)$ becomes complex.
2. For more than one charged particle, we must add their respective contributions, and the smallest m contributes most.
3. The internal propagator is given by

$$
\begin{aligned}
e^{2} D^{\mu \nu}(q) & \rightarrow \frac{-i e^{2}}{q^{2}-i \epsilon} \frac{\eta^{\mu \nu}}{1-\Pi\left(q^{2}\right)} \\
& =\frac{-i e^{2} \eta^{\mu \nu}}{q^{2}-i \epsilon}\left(1+\Pi\left(q^{2}\right)+\ldots\right)
\end{aligned}
$$

We see that for $q^{2} \gg m^{2}$, a large spacelike momentum, from (17) we have

$$
\begin{aligned}
\Pi\left(q^{2}\right) & \approx \frac{e^{2}}{2 \pi^{2}} \log \frac{q^{2}}{m^{2}} \int_{0}^{1} d x x(1-x) \\
& =\frac{\alpha}{3 \pi} \log \frac{q^{2}}{m^{2}}
\end{aligned}
$$

where $\alpha=\frac{e^{2}}{4 \pi}$. Then, the internal propagator goes as

$$
\begin{equation*}
\frac{e^{2}}{q^{2}-i \epsilon} \longrightarrow \frac{e^{2}}{1-\Pi\left(q^{2}\right)} \frac{1}{q^{2}-i \epsilon} \equiv \frac{e^{2}(q)}{q^{2}-i \epsilon} \tag{18}
\end{equation*}
$$

with $e^{2}(q)=\frac{e^{2}}{1-\frac{\alpha}{3 \pi} \log \frac{q^{2}}{m^{2}}}$ the running coupling constant.

3.4.2: Physical implication

Consider scattering of two charged particles with coupling constants e_{1} and e_{2}, for example, in the process $e^{-}+$ $\mu^{-} \longrightarrow e^{-}+\mu^{-}:$

to lowest order, where e is the coupling constant associated with the lightest intermediate particle.

$$
S\left(1,2 \longrightarrow 1^{\prime}, 2^{\prime}\right)=(-i e)^{2} \bar{u}_{1^{\prime}}\left(p_{1}^{\prime}\right) \gamma^{\mu} u_{1}\left(p_{1}\right) D_{\mu \nu}(q) \bar{u}_{2^{\prime}}\left(p_{2}^{\prime}\right) \gamma^{\nu} u_{2}\left(p_{2}\right)
$$

where

$$
\begin{equation*}
D_{\mu \nu}(q)=\frac{-i}{q^{2}-i \epsilon} \frac{P_{\mu \nu}^{T}(q)}{1-\Pi\left(q^{2}\right)}+D_{\mu \nu}^{L}(q) \tag{20}
\end{equation*}
$$

and $P_{\mu \nu}^{T}=\eta_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}, q=p_{1}^{\prime}-p_{1}=p_{2}^{\prime}-p_{2}$. Note that $\bar{u}_{2^{\prime}}\left(p_{2}^{\prime}\right) \gamma^{\nu} u_{2}\left(p_{2}\right) q_{\nu}=\bar{u}_{2^{\prime}}\left(p_{2}^{\prime}\right)\left(\not p_{2}^{\prime}-\not p_{2}\right) u_{2}\left(p_{2}\right)=0$. We now want to consider corrections to the Coulomb potential. We consider the low energy, non-relativistic limit, where we derive most of our intuition about electromagnetism from, and where the notion of a potential makes most sense. The lowest two diagrams drawn above correspond to

In the non-relativistic limit,

$$
\begin{equation*}
\left|q^{0}\right| \sim|v \vec{q}| \ll|\vec{q}|, \quad q^{2} \approx \vec{q}^{2} \tag{22}
\end{equation*}
$$

In this case, one-photon exchange corresponds to the Born approximation:

$$
\begin{equation*}
\frac{e_{1} e_{2}}{\vec{q}^{2}}=\int d^{3} \vec{r} e^{-i \vec{q} \cdot \vec{r}} V_{0}(\vec{r}) \tag{23}
\end{equation*}
$$

where $V_{0}(\vec{r})=\frac{e_{1} e_{2}}{4 \pi|\vec{r}|}$ is the Coulomb potential. The one-loop correction is given by $\frac{e_{1} e_{2}}{\vec{q}^{2}} \Pi\left(\vec{q}^{2}\right)$, where, from (17)

$$
\begin{equation*}
\Pi\left(\vec{q}^{2}\right)=\frac{e^{2}}{2 \pi^{2}} \int_{0}^{1} d x x(1-x) \log \left(1+\frac{\vec{q}^{2}}{m^{2}} x(1-x)\right) \tag{24}
\end{equation*}
$$

and the term provides a correction to the Coulomb potential

$$
\begin{equation*}
\delta V(\vec{r})=e_{1} e_{2} \int d^{3} \vec{r} e^{-i \vec{q} \cdot \vec{r}} \frac{\Pi\left(\vec{q}^{2}\right)}{\vec{q}^{2}} \tag{25}
\end{equation*}
$$

From now on, we will for convenience write $q \equiv|\vec{q}|, r \equiv\|\vec{r}\|$. The angular integral is given by

$$
\begin{aligned}
& \frac{2 \pi}{(2 \pi)^{3}} \int_{0}^{\pi} d \theta \sin \theta e^{i q r \cos \theta} \\
= & \frac{1}{4 \pi^{2}} \frac{1}{i q r}\left(e^{i q r}-e^{-i q r}\right),
\end{aligned}
$$

and so we find for the correction to the Coulomb potential

$$
\begin{aligned}
\delta V(\vec{r}) & =\frac{e_{1} e_{2}}{4 \pi^{2}} \int_{0}^{\infty} d q \frac{1}{i q r}\left(e^{i q r}-e^{-i q r}\right) \Pi\left(\vec{q}^{2}\right) \\
& =\frac{e_{1} e_{2}}{4 \pi^{2}} \int_{-\infty}^{\infty} d q \frac{1}{i q r} e^{i q r} \Pi\left(\vec{q}^{2}\right)
\end{aligned}
$$

Figure 1: Clockwise contour for the integral in $d z$ in (26). The semi-circular arc is taken to infinity and gives a vanishing contribution.

If we now let $z \equiv q r, a \equiv \frac{m r}{\sqrt{x(1-x)}} \geq 2 m r$, the result reduces to

$$
\begin{equation*}
\delta V(\vec{r})=\frac{e_{1} e_{2}}{8 \pi^{4}} \frac{e^{2}}{i r} \int_{0}^{1} d x x(1-x) \int_{-\infty}^{\infty} d z \frac{e^{i z}}{z} \log \left(1+\frac{z^{2}}{a^{2}}\right) \tag{26}
\end{equation*}
$$

The integral in $d z, I=\int_{-\infty}^{\infty} d z \frac{e^{i z}}{z} \log \left(1+\frac{z^{2}}{a^{2}}\right)$, can be computed using the complex contour shown in figure 1 , giving

$$
\begin{aligned}
I & =2 \int_{a}^{\infty} d \lambda \frac{e^{-\lambda}}{\lambda} i \pi \\
& =2 i \pi \int_{1}^{\infty} d \lambda \frac{e^{-a \lambda}}{\lambda}
\end{aligned}
$$

after setting $\lambda \rightarrow a \lambda$. So, our result for the correction to the Coulomb potential is given by

$$
\begin{aligned}
\delta V(\vec{r}) & =\frac{e_{1} e_{2}}{4 \pi} \frac{e^{2}}{\pi^{2}} \int_{0}^{1} d x x(1-x) \int_{1}^{\infty} \frac{d \lambda}{\lambda} e^{-\lambda \frac{m r}{\sqrt{x(1-x)}}} \\
& \equiv \frac{e_{1} e_{2}}{4 \pi} Z(m r)
\end{aligned}
$$

Remarks:

1. When $m r \gg 1$, we can evaluate the integral in the saddle-point approximation, using integration by parts,

$$
\begin{equation*}
\delta V(r)=\frac{e_{1} e_{2}}{4 \pi} \frac{e^{2}}{16 \pi^{\frac{3}{2}}} \frac{e^{-2 m r}}{(m r)^{\frac{3}{2}}}+\ldots \tag{27}
\end{equation*}
$$

2. $\quad Z(m r)$ increases with decreasing r. As $r \longrightarrow 0, I(r) \longrightarrow \infty$. If we consider putting a short-distance cut off at $m r=e \ll 1$, we find

$$
\begin{equation*}
Z(\epsilon)=\frac{e^{2}}{6 \pi^{2}} \log \frac{1}{\epsilon}+\ldots \tag{28}
\end{equation*}
$$

and thus

$$
\begin{aligned}
V(r) & =V_{0}+\delta V(r) \\
& =\frac{e_{1} e_{2}}{4 \pi r}(1+Z(m r)) \\
& =\frac{\tilde{e}_{1}(r) \tilde{e}_{2}(r)}{4 \pi r}
\end{aligned}
$$

where

$$
\begin{equation*}
\tilde{e}_{i}(r)=e_{i}(1+Z(m r))^{\frac{1}{2}} \tag{29}
\end{equation*}
$$

Figure 2: Virtual electron-positron pairs form a screening effect.

We observe that $\tilde{e}_{i}(r) \longrightarrow \infty$ as $r \longrightarrow 0$, and $\tilde{e}_{i}(r) \longrightarrow e_{i}$ as $r \longrightarrow 0$, with small experimental corrections. Physically, we can view $\tilde{e}_{i}(r=\epsilon)$ as the bare charge, which is very large. The physical interpretation is that virtual electron-positron pairs screen the charge more at large distances. The screening length is given by $r_{s} \sim \frac{1}{2 m}$. That is, there is a negative cloud of size $\frac{1}{2 m}$. At large distances, the charges scale as $e_{i} \sim e^{-2 m r}$.

MIT OpenCourseWare
http://ocw.mit.edu

8.324 Relativistic Quantum Field Theory II

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

