8.324 Relativistic Quantum Field Theory II
 MIT OpenCourseWare Lecture Notes

Hong Liu, Fall 2010

Lecture 15

3.3: ANOMALOUS MAGNETIC MOMENT

In the last lecture, we showed that the physical vertex $\Gamma^{\mu}\left(k_{1}, k_{2}\right)$ takes the general form

$$
\begin{equation*}
i \Gamma^{\mu}\left(k_{1}, k_{2}\right)=e\left[\gamma^{\mu} F_{1}\left(q^{2}\right)-\frac{\sigma^{\mu \nu} q_{\nu}}{2 m} F_{2}\left(q^{2}\right)\right] \tag{1}
\end{equation*}
$$

and in the limit $k_{1}-k_{2}=q \longrightarrow 0$,

$$
\begin{equation*}
i \Gamma^{\mu}\left(k_{1}, k_{2}\right) \longrightarrow e\left[\gamma^{\mu}-\frac{\sigma^{\mu \nu} q_{\nu}}{2 m} F_{2}(0)\right] \equiv \Gamma_{e f f}^{\mu}\left(k_{1}, k_{2}\right) \tag{2}
\end{equation*}
$$

This vertex is reproduced by the effective Lagrangian,

$$
\begin{equation*}
\mathscr{L}_{e f f}=-i \bar{\psi}\left(\gamma^{\mu} \partial_{\mu}-m\right) \psi-e A_{\mu} \bar{\psi} \gamma^{\mu} \gamma-\frac{i e F_{2}(0)}{4 m} \bar{\psi} \sigma^{\mu \nu} F_{\mu \nu} \psi \tag{3}
\end{equation*}
$$

Consider the case where ψ is non-relativistic, in a classical electromagnetic background A_{μ}. That is,

$$
\begin{aligned}
p^{0} \sim m v^{2}+m & \vec{p} \sim m v \\
A^{0} \sim m v^{2} & \vec{A} \sim m v
\end{aligned}
$$

where $v \ll 1$. This is consistent, because $D^{\mu}=\partial^{\mu}-i e A^{\mu}=i(p-e A)^{\mu}$, so, A^{0} and \vec{A} interact with ψ and give it energy of the order $m v^{2}$, and momentum of the order $m v$. The Dirac equation now has the form

$$
\begin{equation*}
\left(\gamma^{\mu}\left(\partial_{\mu}-i e A_{\mu}\right)-m\right) \psi+\frac{e F_{2}(0)}{4 m} F_{\mu \nu} \sigma^{\mu \nu} \psi=0 \tag{4}
\end{equation*}
$$

or $i \partial_{t} \psi=H \psi$, with

$$
\begin{equation*}
H=m \beta+\vec{\alpha} \cdot(\vec{p}-e \vec{A})+e A^{0}+\frac{i e F_{2}(0)}{4 m} \gamma^{0} \sigma^{\mu \nu} F_{\mu \nu} \tag{5}
\end{equation*}
$$

Here, $\beta=-i \gamma^{0}$ and $\alpha^{i}=-i \gamma^{0} \gamma^{i}$. We will choose the basis

$$
\gamma^{0}=i\left(\begin{array}{cc}
I & 0 \tag{6}\\
0 & -I
\end{array}\right), \quad \gamma^{i}=i\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)
$$

or, equivalently,

$$
\beta=\left(\begin{array}{cc}
I & 0 \tag{7}\\
0 & -I
\end{array}\right), \quad \vec{\alpha}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right)
$$

From this, we find

$$
\begin{aligned}
\gamma^{0} \sigma^{0 i} & =\frac{i}{2} \gamma^{0}\left[\gamma^{0}, \gamma^{i}\right]=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right) \\
\gamma^{0} \sigma^{i j} & =\frac{i}{2} \gamma^{0}\left[\gamma^{i}, \gamma^{j}\right]=-i \epsilon^{i j k}\left(\begin{array}{cc}
\sigma_{k} & 0 \\
0 & -\sigma_{k}
\end{array}\right)
\end{aligned}
$$

We now write $\psi^{T} \equiv\left(\begin{array}{cc}\phi & \chi\end{array}\right), F_{0 i} \equiv E_{i}$ and $F_{i j}=\epsilon_{i j k} B_{k}$. The Dirac equation reduces to two coupled partial differential equations:

$$
\begin{aligned}
i \partial_{t} \phi & =m \phi+\vec{\sigma} \cdot(\vec{p}-e \vec{A}) \chi+e A^{0} \phi+\frac{i e F_{2}(0)}{2 m}[\vec{\sigma} \cdot \vec{E} \chi-i \vec{\sigma} \cdot \vec{B} \phi] \\
i \partial_{t} \chi & =-m \chi+\vec{\sigma} \cdot(\vec{p}-e \vec{A}) \phi+e A^{0} \chi+\frac{i e F_{2}(0)}{2 m}[-\vec{\sigma} \cdot \vec{E} \phi+i \vec{\sigma} \cdot \vec{B} \chi]
\end{aligned}
$$

We now let $\phi=e^{-i m t} \Phi, \chi=e^{-i m t} X$. As $i \partial_{t} \psi \sim\left[m+O\left(m v^{2}\right)\right] \psi, \Phi$ and X describe fluctuations with $\Delta E \sim m v^{2}$. In terms of these fields, taking the limit $v \longrightarrow 0$, the equations reduce to

$$
\begin{aligned}
i \partial_{t} \Phi & =\vec{\sigma} \cdot \vec{\pi} X+e A^{0} \Phi+\frac{i e F_{2}(0)}{2 m}[-i \vec{\sigma} \cdot \vec{B} \phi]+O\left(v^{3}\right) \\
0 & =-2 m X+\vec{\sigma} \cdot \vec{\pi} \Phi+O\left(v^{2}\right)
\end{aligned}
$$

where $\vec{\pi}=\vec{p}-e \vec{A}$, and so, solving the second equation for X, and inserting the result into the first equation, we obtain

$$
\begin{aligned}
X & =\frac{1}{2 m} \vec{\sigma} \cdot \vec{\pi} \Phi \\
i \partial_{t} \Phi & =\frac{1}{2 m}(\vec{\sigma} \cdot \vec{\pi})^{2} \Phi+e A^{0} \Phi+\frac{e F_{2}(0)}{2 m} \vec{\sigma} \cdot \vec{B} \Phi
\end{aligned}
$$

Now,

$$
\begin{equation*}
(\vec{\sigma} \cdot \vec{\pi})^{2}=\sigma_{i} \sigma_{j} \pi^{i} \pi^{j}=\left(\delta_{i j}+i \epsilon_{i j k} \sigma_{k}\right) \pi^{i} \pi^{j}=\pi^{2}+e \vec{\sigma} \cdot \vec{B}, \tag{8}
\end{equation*}
$$

as $\left[\pi^{i}, \pi^{j}\right]=-i e F^{i j}=-i e \epsilon_{i j k} B_{k}$, and so we arrive at the following time-evolution equation in the limit $v \longrightarrow 0$:

$$
\begin{equation*}
i \partial_{t} \Phi=\left[\frac{1}{2 m}(\vec{p}-e \vec{A})^{2}+e A^{0}+\frac{e}{2 m}\left(1+F_{2}(0)\right) \vec{\sigma} \cdot \vec{B}\right] \Phi . \tag{9}
\end{equation*}
$$

We recognise the first two terms as the kinetic energy of a particle in an electromagnetic field and the electrostatic potential energy, respectively, and the third term takes the form of a magnetic interaction,

$$
\begin{equation*}
H_{m a g}=-\vec{\mu} \cdot \vec{B} \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
\vec{\mu}=-\frac{e}{2 m} 2\left(1+F_{2}(0)\right) \frac{\vec{\sigma}}{2}=\gamma \vec{S} \tag{11}
\end{equation*}
$$

with $\vec{S}=\frac{\vec{\sigma}}{2}$ the spin, and $\gamma=\frac{e}{2 m} g$ the gyromagnetic ratio. Classically, we expect $g=1$, and in the Dirac equation of quantum mechanics, we find $g=2$. We see that in the case of quantum electrodynamics, we have $g=2+2 F_{2}(0)$. The additional term of $2 F_{2}(0)$ is known as the anomalous magnetic moment. We will now explicitly compute the lowest order correction to the magnetic moment.

3.3.1: One-loop correction to the magnetic moment

To lowest order, the correction to the physical vertex function is given by

$$
\begin{align*}
\Gamma_{1}^{\mu}\left(k_{1}, k_{2}\right) & \equiv \sim_{k_{1}+l}^{k_{2}+l}{ }_{k_{1}}^{k_{2}} \\
& =(-i e)^{3} \int \frac{d^{4} l}{(2 \pi)^{4}} \gamma^{\rho} S_{0}\left(k_{2}+l\right) \gamma^{\mu} S_{0}\left(k_{1}+l\right) \gamma^{\nu} D_{\nu \rho}^{(0)}(l), \tag{12}
\end{align*}
$$

where $S_{0}(k)=\frac{-i k-m}{k^{2}+m^{2}-i \epsilon}$ and $D_{\mu \nu}^{(0)}=\frac{-i g_{\mu \nu}}{l^{2}-i \epsilon}$. Explicitly, we have

$$
\begin{equation*}
\Gamma_{1}^{\mu}\left(k_{1}, k_{2}\right)=(-i e)^{3}(-1)^{2}(-i) \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{\gamma^{\rho}\left[i\left(k /_{2}+l\right)+m\right] \gamma^{\mu}\left[i\left(k_{1}+l\right)+m\right] \gamma^{\nu}}{\left(\left(k_{1}+l\right)^{2}+m^{2}-i \epsilon\right)\left(\left(k_{2}+l\right)^{2}+m^{2}-i \epsilon\right)\left(\left(l^{2}-i \epsilon\right)\right.} . \tag{13}
\end{equation*}
$$

We can combine the denominators using the Feynman trick,

$$
\begin{equation*}
\frac{1}{A_{1} A_{2} A_{3}}=\int_{0}^{1} d x_{1} \int_{0}^{1} d x_{2} \int_{0}^{1} d x_{3} \delta\left(x_{1}+x_{2}+x_{3}-1\right) \frac{2}{\left(x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}\right)^{3}} \tag{14}
\end{equation*}
$$

reducing our result for Γ_{1}^{μ} to

$$
\begin{equation*}
\Gamma_{1}^{\mu}=2 e^{3} \int_{0}^{1} d x_{1} \int_{0}^{1} d x_{2} \int_{0}^{1} d x_{3} \delta\left(x_{1}+x_{2}+x_{3}-1\right) \frac{N^{\mu}}{D^{3}} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
N^{\mu} \equiv \gamma^{\nu}\left[i\left(\not k_{2}+l\right)+m\right] \gamma^{\mu}\left[i\left(\not k_{1}+l\right)+m\right] \gamma_{\nu} \tag{16}
\end{equation*}
$$

and

$$
\begin{aligned}
D & \equiv x_{1}\left[\left(\not k_{1}+l\right)^{2}+m^{2}\right]+x_{2}\left[\left(\not k_{2}+l\right)^{2}+m^{2}\right]+x_{3} l^{2}-i \epsilon \\
& =\left(l+x_{1} k_{1}+x_{2} k_{2}\right)^{2}+x_{1}\left(1-x_{1}\right) k_{1}^{2}+x_{2}\left(1-x_{2}\right) k_{2}^{2}-2 x_{1} x_{2} k_{1} . k_{2}+\left(x_{1}+x_{2}\right) m^{2}-i \epsilon .
\end{aligned}
$$

We may shift the variable in the integral $l \longrightarrow p=l+x_{1} k_{1}+x_{2} k_{2}$, and rewrite the result in terms of q^{2} instead of $k_{1} . k_{2}$, giving

$$
\begin{equation*}
D=p^{2}+x_{1} x_{2} q^{2}+\left(x_{1}+x_{2}\right)^{2} m^{2}-i \epsilon \tag{17}
\end{equation*}
$$

Further,

$$
\begin{aligned}
N^{\mu}= & \gamma^{\nu}\left[i\left(\not p-x_{1} \not k_{1}+\left(1-x_{2}\right) \not k_{2}\right)+m\right] \gamma^{\mu}\left[i\left(\not p+\left(1-x_{1}\right) \not k_{1}+x_{2} \not k_{2}\right)+m\right] \gamma_{\nu} \\
= & -\gamma^{\nu} \not p \gamma^{\mu} \not p \gamma_{\nu}+\gamma^{\nu}\left[i\left(x_{1} \not k_{1}+\left(1-x_{2}\right) \not k_{2}\right)+m\right] \gamma^{\mu}\left[i\left(\left(1-x_{1}\right) \not k_{1}+x_{2} \not k_{2}\right)+m\right] \gamma_{\nu} \\
& + \text { terms linear in } p .
\end{aligned}
$$

The terms linear in p evaluate to zero in the integral, as they are odd, so we can discard them. The first term can be evaluated using the identity $\gamma^{\nu} \phi b \phi \gamma_{\nu}=-2 \phi \phi \phi$, resulting in

$$
\begin{equation*}
-\gamma^{\nu} \not p \gamma^{\mu} \not p \gamma_{\nu}=-2 \not p \not p \gamma^{\mu}+4 \not p p^{\mu}=-2 p^{2} \gamma^{\mu}+4 p^{\nu} p^{\mu} \gamma_{\nu} \tag{18}
\end{equation*}
$$

This last term is again odd in the individual components of the momentum integral, and so reduces to $\frac{p^{2} g^{\nu \mu}}{4} \gamma_{\nu}$ inside the integral. So, the contribution to the integrand from the first term is

$$
\begin{equation*}
-p^{2} \gamma^{\mu} \tag{19}
\end{equation*}
$$

We see that this term contributes to F_{1}, and we know by the Ward identity that $F_{1}(0)$ is zero. We can disregard this term here. The second term is p-independent, convergent in the ultraviolet, and contains a contribution to F_{2}. We use the identities

$$
\begin{aligned}
\gamma^{\nu} \gamma^{\alpha} \gamma^{\beta} \gamma_{\nu} & =4 g^{\alpha \beta} \\
\gamma^{\nu} \gamma^{\alpha} \gamma_{\nu} & =-2 \gamma^{\alpha}
\end{aligned}
$$

and so the relevant contribution to N^{μ} is

$$
\begin{aligned}
N^{\mu}= & -2\left[-i x_{2} \not k_{2}+i\left(1-x_{1}\right) \not k_{1}\right] \gamma^{\mu}\left[-i x_{1} \not k_{1}+i\left(1-x_{2}\right) \not k_{2}\right] \\
& +4 m\left[i\left(1-2 x_{1}\right) k_{1}^{\mu}+i\left(1-2 x_{2}\right) k_{2}^{\mu}\right]-2 m^{2} \gamma^{\mu} .
\end{aligned}
$$

We discard the last term, which again contributes to F_{1}. We again use the fact that Γ^{μ} appears in the combination $\bar{u}\left(k_{2}\right) \Gamma^{\mu} u\left(k_{1}\right)$ for on-shell spinors, and that $\bar{u} \not k_{2}=-i m \bar{u}, \not k_{1} u=-i m u$, for on-shell solutions. So, the relevant part of N^{μ} in the integrand can be written as

$$
\begin{aligned}
N^{\mu}= & -2\left[-x_{2} m+i\left(1-x_{1}\right) \not k_{1}\right] \gamma^{\mu}\left[-x_{1} m+i\left(1-x_{2}\right) \not k_{2}\right] \\
& +\operatorname{4im}\left[\left(1-2 x_{1}\right) k_{1}^{\mu}+\left(1-2 x_{x}\right) k_{2}^{\mu}\right] .
\end{aligned}
$$

Using the identity $\not k \gamma^{\mu}=-\gamma^{\mu} \not k+2 k^{\mu}$, and again retaining only the parts contributing to F_{2}, the relevant part of N^{μ} reduces finally to

$$
\begin{equation*}
N^{\mu}=2 i m\left(x_{1}+x_{2}\right)\left(1-x_{1}-x_{2}\right)\left(k_{1}^{\mu}+k_{2}^{\mu}\right) . \tag{20}
\end{equation*}
$$

Thus, we find

$$
\begin{equation*}
\Gamma_{1}^{\mu}=\gamma^{\mu}(\ldots)+\left(k_{1}^{\mu}+k_{2}^{\mu}\right) B \tag{21}
\end{equation*}
$$

with

$$
\begin{equation*}
B=2 e^{3} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} d x_{1} d x_{2} d x_{3} \delta\left(x_{1}+x_{2}+x_{3}-1\right) \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{2 i m\left(x_{1}+x_{2}\right)\left(1-x_{1}-x_{2}\right)}{\left(p^{2}+x_{1} x_{2} q^{2}+\left(x_{1}+x_{2}\right)^{2} m^{2}-i \epsilon\right)^{3}} . \tag{22}
\end{equation*}
$$

Figure 1: Illustration of the Wick rotation of the variable q_{0}.

Applying the Wick rotation, $p^{0} \equiv i p_{E}^{4}, d^{4} p=i d^{4} p_{E}$, we can explicitly evaluate

$$
\begin{equation*}
\int \frac{d^{4} p_{E}}{(2 \pi)^{4}} \frac{1}{\left(p_{E}^{2}+\Delta\right)}=\frac{1}{32 \pi^{2} \Delta} \tag{23}
\end{equation*}
$$

and so

$$
\begin{equation*}
B=-4 m e^{3} \frac{1}{32 \pi^{2}} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} d x_{1} d x_{2} d x_{3} \delta\left(x_{1}+x_{2}+x_{3}-1\right) \frac{x_{3}\left(1-x_{3}\right)}{x_{1} x_{2} q^{2}+\left(1-x_{3}\right)^{2} m^{2}} \tag{24}
\end{equation*}
$$

and, finally, for the form-factor F_{2} we obtain the result

$$
\begin{aligned}
F_{2}(0) & =-\frac{2 m}{e} B\left(q^{2}=0\right)=\frac{e^{2}}{4 \pi} \int_{0}^{1} d x_{3} \int_{0}^{1-x_{3}} d x_{2} \frac{x_{3}}{1-x_{3}} \\
& =\frac{e^{2}}{4 \pi^{2}} \int_{0}^{1} d x_{3} x_{3}=\frac{e^{2}}{8 \pi^{2}}=\frac{\alpha}{2 \pi}
\end{aligned}
$$

where $\alpha \equiv \frac{e^{2}}{4 \pi} \sim \frac{1}{137}$, and so

$$
\begin{equation*}
g=2+2 F_{2}(0)=2+\frac{\alpha}{\pi} \tag{25}
\end{equation*}
$$

$a_{e}=\frac{g-2}{2}=\frac{\alpha}{2 \pi}=0.0011614 .$. at one-loop level. Experimentally, $a_{e}=0.00115965218073$ (28) (Gabrielse 2008). Theoretically, the result is decomposed as

$$
\begin{equation*}
F_{2}(0)=\frac{\alpha}{2 \pi}+a_{2}\left(\frac{\alpha}{\pi}\right)^{2}+a_{3}\left(\frac{\alpha}{\pi}\right)^{3}+a_{4}\left(\frac{\alpha}{\pi}\right)^{4} \tag{26}
\end{equation*}
$$

where the second coefficient, a_{2}, consists of seven diagrams, and was calculated in 1957. The third coefficient consists of 72 diagrams, and was calculated in 1996. The fourth coefficient, a_{4}, consists of 891 diagrams.

MIT OpenCourseWare
http://ocw.mit.edu

8.324 Relativistic Quantum Field Theory II

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

