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We now consider the Lagrangian for quantum electrodynamics in terms of renormalized quantities. 

1 
F B µνL = − 

4 µν F − iψ̄B (γ
µ(∂µ − ieB A

B
µ ) − mB )ψBB 

1 
Z3Fµν F µν ¯ ¯= − 

4 
− iZ2ψ(γ

µ∂µ − m − δm)ψ − Z2eAµψγ
µψ. 

We know from previous lectures that there is no mass term for Aµ, that the bare and physical fields and couplings 
are related by 

AB 
µ = 

√√ 
Z3Aµ, 

ψB = Z2ψ, 

mB = m + δm, 
1 

eB = e,√
Z3 

and that there is no renormalization for the gauge fixing term. These results are a consequence of gauge 
symmetry, enforced through the Ward identities. We split the Lagrangian into three pieces: 

L = L0 + L1 + Lct, (1) 

where we have 

L0 = − 
4

1 
Fµν F µν − iψ̄(γµ∂µ − m)ψ, 

¯L1 = −eAµψγ
µγ, 

Lct = − 
4

1
(Z3 − 1)Fµν F µν − i(Z2 − 1)ψ̄(γµ∂µ − m)ψ 

¯−iZ2δm ̄ ψγµγ. ψψ − (Z2 − 1)eAµ 

L0 is the free Lagrangian, L1 is the interaction Lagrangian, and Lct is the counter-term Lagrangian. The 
parameters Z3 − 1, Z2 − 1 and δm are specified by the following renormalization conditions: 

1. For the spinor propagator, S(k) = 
ik/−m+

1 
iϵ−�(k/) , 

Σ|k/=−im = 0 (Physical mass condition), 

dΣ 
= 0 (Physical field condition). 

dk/ k/=−im 

P T 
µ� 12. For the photon propagator, DT 

µν (k) = k2−iϵ 1−�(k2) ,


Π|k=0 = 0 (Physical mass condition). (2)


These three conditions allow us to fix our three parameters. We note that there is no need to introduce conditions 
on vertex corrections, and so, L is written in terms of physically measured masses and couplings. From this 
deconstruction, we acquire a set of Feynman rules for the interaction and counterterms in terms of the physical 
propagators. 

1 



Lecture 14 8.324 Relativistic Quantum Field Theory II Fall 2010 

= 
−igµν 

k2 + iϵ 
, 

1 

p 
= 

i/k − m + iϵ 
, 

p 

p 

p 

= −ieγµ, 

= −i(Z3 − 1)(k2 gµν − kµkν ) ∼ O(e 2), 

= −i(Z2 − 1)(ik/ − m) + Z2δm ∼ O(e 2), 

= −i(Z2 − 1)eγµ ∼ O(e 3). (3) 

3.2: VERTEX FUNCTION 

Consider the effective vertex we defined before: 

Γµ (k, k) = phys

≡ −iephysγµ. (4) 

This is the physical vertex: it captures the full electromagnetic properties of a spinor interacting with a photon. 
As we showed in the previous lecture, the Ward identities impose that 

Γµ(k, k) = −ieγµ (5) 

when k is on-shell, with e = �1
Z3 
eB being the physical charge. We note that in this case, q = 0, and so this is an 

interaction with a static potential, measuring electric charge. We will now proceed to examine the general 
structure of Γµ(k1, k2), with k1 and k2 on-shell. We will discuss the physical interpretation, and we will compute 
the one-loop correction explicitly. For general k1

2 = k2 = −m2, q2 = (k2 − k1)2 = 0, the process being described is ̸2 
an electron interacting a general external electromagnetic field. From Lorentz invariance, we can build Γµ from 
γµ, k1 

µ and k2 
µ . Hence, 

iΓµ(k1, k2) = γµA + i(k2 
µ + kµ)B + (kµ − kµ)C, (6) 1 2 1 

where A, B, and C are 4 × 4 matrix functions of k1 and k2. But, since k1 and k2 are on-shell, and Γµ always 
appears in a product as 

ūs′ (k2)Γ
µ(k1, k2)us(k1) (7) 

where us′ (k1) and ūs(k2) are on-shell spinor wave functions, we can then simplify Γµ with the understanding that 
it will always be found in this combination, using the on-shell spinor identities 

ku/ s(k) = −imus(k), 
ūs(k)k/ = −imūs(k). 

2 

µ 

k 

k 
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Hence, A, B, and C are scalars, and functions of the scalars k1
2 , k2

2 and k1.k2, or, equivalently, of q2 and m. From 
the Ward identities, we have that 

qµΓ
µ = 0, (8) 

and, as ūs′ (k2)/qus(k1) = 0, and qµ(k1 
µ − kµ) = 0, only the term in C on the left-hand side is non-zero. We therefore 2 

have C = 0. It is common to rewrite Γµ using the Gordon identity. Defining σµν = 2 
i [γµ, γν ] , this result states 

ūs′ (k2)γ
µus(k1) = 

i
ūs′ (k2) [(k1 

µ + k2 
µ) + iqν σ

µν ] us(k1). (9) 
2m 

This allows us to exchange the term in B for a term in σµν . 

Proof 

i 
ūs′ (k2)γ

µus(k1) = [ūs′ (k2)γ
µk/1us(k1) + ūs′ (k2)k/2γ

µus(k1)]
2m [( )
i k2v + k1v k2v − k1v 

=
2m 2 

− 
2 

ūs′ (k2)γ
µγν us(k1) ( ) ]

+ 
k2v + k1v 

+ 
k2v − k1v 

ūs′ (k2)γ
v γµus(k1)

2 2 

= 
i
ūs′ (k2) 

[( 
k2v + k1v 

) 

{γµ, γν 

( 
k2v − k1v 

) 

[γµ, γν ]

] 

us(k1)
2m 2 

} − 
2 

= 
i
ūs′ (k2) [(k2 

µ + k1 
µ) + iqvσ

µν ] us(k1). 
2m 

From this, we find that 

iΓµ(k1, k2) = e 

[
γµF1(q 

2) − 
σµν qν 

F2(q 
2)

] 

. (10)
2m 

F1(q
2) and F2(q

2) are known as form factors. We have that eF1(q
2) = A + 2mB, and eF2(q

2) = −2mB. Note that 
the Ward identity means that F1(0) = 1 exactly. 
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