8.324 Relativistic Quantum Field Theory II

MIT OpenCourseWare Lecture Notes
Hong Liu, Fall 2010

Lecture 12

3: GENERAL ASPECTS OF QUANTUM ELECTRODYNAMICS

3.1: RENORMALIZED LAGRANGIAN

Consider the Lagrangian of quantum electrodynamics in terms of the bare quantities:

$$
\begin{equation*}
\mathscr{L}=-\frac{1}{4} F_{\mu \nu}^{B} F_{B}^{\mu \nu}-i \bar{\psi}_{B}\left(\gamma^{\mu}\left(\partial_{\mu}-i e_{B} A_{\mu}^{B}\right)-m_{B}\right) \psi_{B} \tag{1}
\end{equation*}
$$

We use the convention:

$$
\begin{equation*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \tag{2}
\end{equation*}
$$

$$
\begin{array}{cc}
\gamma_{0}^{2}=-1, & \gamma_{0}^{\dagger}=-\gamma_{0},
\end{array} \quad \gamma_{i}^{\dagger}=\gamma_{i}, ~=k^{\prime} \gamma_{0}, \quad\{k\}=k^{\mu} \gamma_{\mu}, \quad \not k^{2}=k^{2} .
$$

where, in four dimensions, $\left(\eta^{\mu \nu}\right)=\operatorname{diag}(-1,1,1,1)$. We expect to find the mass and field renormalizations. Note: we will omit the "B" signifying bare quantities in what follows.

along with vertex corrections

We will look at how to introduce renormalized quantities.

3.1.1: Fermion self-energy

We have that

$$
\begin{equation*}
S_{\alpha \beta}(x)=\langle 0| T\left(\psi_{\alpha}(x) \bar{\psi}_{\beta}(0)|0\rangle,\right. \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
& S_{\alpha \beta}(k)=\alpha \longrightarrow \longrightarrow^{\beta}+{ }^{1 P I=-\Sigma} \\
& =S_{0}(k)+S_{0}(-\Sigma) S_{0}+S_{0}(-\Sigma) S_{0}(-\Sigma) S_{0}+\ldots \\
& =S_{0} \frac{1}{1+\Sigma S_{0}} \text {, } \tag{6}
\end{align*}
$$

where we have omitted the spinor indices in the second and third lines: these are to be read as matrix equations. Hence, we have that

$$
\begin{equation*}
S^{-1}=S_{0}^{-1}+\Sigma \tag{7}
\end{equation*}
$$

Recall that

$$
\begin{equation*}
S_{0}=\frac{-1}{i \not k+m_{B}},-\Sigma=\rightarrow \sim+\ldots \tag{8}
\end{equation*}
$$

and so

$$
\begin{equation*}
S^{-1}=-\left(i \not k+m_{B}\right)+\Sigma \tag{9}
\end{equation*}
$$

and we have for the fully interacting two-point function

$$
\begin{equation*}
S=\frac{-1}{i \not k+m_{B}-i \epsilon-\Sigma} . \tag{10}
\end{equation*}
$$

Note that $\Sigma=\Sigma(\not / k)$, since it can only depend on $\nless k$ and k^{2}. Even though it is a function of matrix, we can treat it as an ordinary function. The physical mass is defined by $\not k=i m$, so that

$$
\begin{equation*}
-m+m_{B}-\Sigma(i m)=0 \tag{11}
\end{equation*}
$$

We note that, again, Σ will be divergent. Near the pole, we have that

$$
\begin{equation*}
S \approx \frac{-Z_{2}}{i \not k+m-i \epsilon} \tag{12}
\end{equation*}
$$

with $Z_{2}^{-1}=1+\left.i \frac{d \Sigma}{d k}\right|_{k k=i m}$. The relations between the bare and physical quantities are given by

$$
\begin{equation*}
m_{B}=m+\delta m, \quad \psi_{B}=\sqrt{Z_{2}} \psi \tag{13}
\end{equation*}
$$

where $\delta m=\Sigma(i m)$ and ψ is the renormalized field.

3.1.2: Photon self-energy

Similarly, we have that

$$
\begin{equation*}
D_{\mu \nu}(x)=\langle 0| T\left(A_{\mu}^{B}(x) A_{\nu}^{B}(0)|0\rangle\right. \tag{14}
\end{equation*}
$$

and

$$
\begin{align*}
& =D_{0}(k)+D_{0}(i \Pi) D_{0}+D_{0}(i \Pi) D_{0}(i \Pi) D_{0}+\ldots \\
& =D_{0} \frac{1}{1-i \Pi D_{0}} \tag{15}
\end{align*}
$$

Hence,

$$
\begin{equation*}
(i D)^{-1}=\left(i D_{0}\right)^{-1}-\Pi . \tag{16}
\end{equation*}
$$

Recall that

$$
\begin{aligned}
i D_{0}^{\mu \nu} & =\frac{1}{k^{2}-i \epsilon}\left[\eta^{\mu \nu}-(1-\xi) \frac{k^{\mu} k^{\nu}}{k^{2}}\right] \\
& =\frac{1}{k^{2}-i \epsilon}\left[P_{T}^{\mu \nu}+\xi P_{L}^{\mu \nu}\right]
\end{aligned}
$$

where we have defined the transverse projector $P_{T}^{\mu \nu} \equiv \eta^{\mu \nu}-\frac{k^{\mu} k^{\nu}}{k^{2}}$, and the longitudinal projector $P_{L}^{\mu \nu} \equiv \frac{k^{\mu} k^{\nu}}{k^{2}}$. Note that it is not a coincidence that the propagator can be built from these two tensors, $\eta^{\mu \nu}$ and $k^{\mu} k^{\nu}$: they are the only two two-tensors allowed by symmetry. These projectors satisfy the properties

$$
\begin{equation*}
P_{T}^{\mu \nu} P_{\nu \lambda}^{T}=P_{T \nu}^{\mu}, \quad P_{L}^{\mu \nu} P_{\nu \lambda}^{L}=P_{L \lambda}^{\mu}, \quad P_{T}^{\mu \nu} P_{\nu \lambda}^{L}=0 \tag{17}
\end{equation*}
$$

Note: T and L are just labels here, and the placing of these indices does not carry meaning. Hence, we have that

$$
\begin{equation*}
\left(i D_{0}\right)^{-1}=k^{2}\left[P_{T}^{\mu \nu}+\frac{1}{\xi} P_{L}^{\mu \nu}\right] \tag{18}
\end{equation*}
$$

We may also expand $\Pi^{\mu \nu}$ as

$$
\begin{align*}
\Pi^{\mu \nu} & =P_{T}^{\mu \nu} f_{T}\left(k^{2}\right)+P_{L}^{\mu \nu} f_{L}\left(k^{2}\right) \\
& =\eta^{\mu \nu} f_{T}+\frac{k^{\mu} k^{\nu}}{k^{2}}\left(f_{L}-f_{T}\right) \tag{19}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
(i D)^{-1}=P_{T}^{\mu \nu}\left(k^{2}-f_{T}\right)+P_{L}^{\mu \nu}\left(\frac{k^{2}}{\xi}-f_{L}\right) \tag{20}
\end{equation*}
$$

and we have for the full interacting photon two-point function,

$$
\begin{equation*}
D=-i\left[P_{T}^{\mu \nu} \frac{1}{k^{2}-f_{T}}+P_{L}^{\mu \nu} \frac{1}{\frac{k^{2}}{\xi}-f_{L}}\right] \tag{21}
\end{equation*}
$$

We observe that if $f_{T, L}\left(k^{2}=0\right) \neq 0$, a mass will be generated for the photon. Because $\Pi^{\mu \nu}$ comes from 1PI diagrams, it should not be singular at $k^{2}=0$, and so $f_{L}-f_{T}=O\left(k^{2}\right)$, as $k \longrightarrow 0$. We will show that gauge invariance ensures that no mass is generated from the loop corrections.

3.1.3: Ward identities

Consider the path integral for the generating functional:

$$
\begin{equation*}
Z\left[J_{\mu}, \eta, \bar{\eta}\right]=\int \mathfrak{D} A_{\mu} \mathfrak{D} \psi \mathfrak{D} \bar{\psi} e^{i S\left[A_{\mu}, \psi, \bar{\psi}\right]} \tag{22}
\end{equation*}
$$

where $S=S_{Q E D}+\int d^{4} x J_{\mu} A_{B}^{\mu}+\bar{\eta} \psi_{B}+\bar{\psi}_{B} \eta$, where we note explicitly these couplings are in terms of bare quantities.

$$
\begin{equation*}
\mathscr{L}_{Q E D}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-i \bar{\psi}\left(\gamma^{\mu} D_{\mu}-m\right) \psi-\frac{1}{2 \xi}\left(\partial_{\mu} A^{\mu}\right)^{2} \tag{23}
\end{equation*}
$$

We define the generating functional for connected diagrams, $W\left[J_{\mu}, \eta, \bar{\eta}\right]$, by

$$
\begin{equation*}
Z\left[J_{\mu}, \eta, \bar{\eta}\right]=e^{i W\left[J_{\mu}, \eta, \bar{\eta}\right]} \tag{24}
\end{equation*}
$$

For example,

$$
\begin{aligned}
\langle 0| T\left(\psi_{\alpha}(x) \bar{\psi}_{\beta}(y)\right)|0\rangle & =\left.i \frac{\delta^{2} W\left[J_{\mu}, \eta, \bar{\eta}\right]}{\delta \eta_{\alpha}(x) \delta \eta_{\beta}(y)}\right|_{J=\eta=\bar{\eta}=0} \\
\langle 0| T\left(A_{\mu}^{B}(x) A_{\nu}^{B}(y)\right)|0\rangle & =\left.i \frac{\delta^{2} W\left[J_{\mu}, \eta, \bar{\eta}\right]}{\delta J^{\mu}(x) \delta J^{\nu}(y)}\right|_{J=\eta=\bar{\eta}=0}
\end{aligned}
$$

Recall, for infinitesimal gauge transformations, $\delta A_{\mu}=\partial_{\mu} \lambda, \delta \psi=i e_{B} \lambda \psi$, and $\delta \bar{\psi}=-i e_{B} \lambda \bar{\psi}$. Consider a change of variables in the path integral:

$$
\begin{aligned}
A_{\mu} & \longrightarrow A_{\mu}^{\prime}=A_{\mu}+\delta A_{\mu} \\
\psi & \longrightarrow \psi^{\prime}=\psi+\delta \psi \\
\bar{\psi} & \longrightarrow \bar{\psi}^{\prime}=\bar{\psi}+\delta \bar{\psi}
\end{aligned}
$$

Then we have

$$
\begin{equation*}
\int \mathfrak{D} A_{\mu}^{\prime} \mathfrak{D} \psi^{\prime} \mathfrak{D} \bar{\psi}^{\prime} e^{i S\left[A_{\mu}^{\prime}, \psi^{\prime}, \bar{\psi}^{\prime}\right]}=\int \mathfrak{D} A_{\mu} \mathfrak{D} \psi \mathfrak{D} \bar{\psi} e^{i S\left[A_{\mu}, \psi, \bar{\psi}\right]} \tag{25}
\end{equation*}
$$

as this is just of a change of the dummy integration variables. Note that the measure is unchanged by this shift:

$$
\begin{equation*}
\mathfrak{D} A_{\mu}^{\prime} \mathfrak{D} \psi^{\prime} \mathfrak{D} \bar{\psi}^{\prime}=\mathfrak{D} A_{\mu} \mathfrak{D} \psi \mathfrak{D} \bar{\psi} \tag{26}
\end{equation*}
$$

and the action for the two sets of variables are related by

$$
\begin{equation*}
S\left[A_{\mu}^{\prime}, \psi^{\prime}, \bar{\psi}^{\prime}\right]=S\left[A_{\mu}^{\prime}, \psi^{\prime}, \bar{\psi}^{\prime}\right]-\frac{1}{\xi} \int d^{4} x \partial_{\mu} A^{\mu} \partial^{2} \lambda+\int d^{4} x J_{\mu} \partial^{\mu} \lambda+i e_{B} \lambda \bar{\eta} \psi-i e_{B} \lambda \bar{\psi} \eta \tag{27}
\end{equation*}
$$

Hence, we must have

$$
\begin{equation*}
\int d^{4} x \lambda(x) \int \mathfrak{D} A_{\mu} \mathfrak{D} \psi \mathfrak{D} \bar{\psi} e^{i S[A, \psi, \bar{\psi}]}\left[-\frac{1}{\xi} \partial^{2} \partial_{\mu} A^{\mu}-\partial_{\mu} J^{\mu}+i e_{B}(\bar{\eta} \psi-\bar{\psi} \eta)\right]=0 \tag{28}
\end{equation*}
$$

Since

$$
\begin{aligned}
A_{\mu}(x) & \sim-i \frac{\delta Z}{\delta J^{\mu}(x)}=Z \frac{\delta W}{\delta J^{\mu}(x)} \\
\psi(x) & \sim-i \frac{\delta Z}{\delta \bar{\eta}(x)}=Z \frac{\delta W}{\delta \bar{\eta}(x)} \\
\bar{\psi}(x) & \sim-i \frac{\delta Z}{\delta \eta(x)}=Z \frac{\delta W}{\delta \eta(x)}
\end{aligned}
$$

we have that

$$
\begin{equation*}
\left.\frac{1}{\xi} \partial^{2} \partial^{\mu} \frac{\delta^{2} W}{\delta J^{\mu}(x) \delta J^{\nu}(y)}\right|_{J=\eta=\bar{\eta}=0}+\partial_{\nu} \delta^{(4)}(x-y)=0 \tag{29}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\frac{i}{\xi} \partial^{2} \partial^{\mu} D_{\mu \nu}(x-y)+\partial_{\nu} \delta^{(4)}(x-y)=0 \tag{30}
\end{equation*}
$$

or, written in momentum-space,

$$
\begin{equation*}
-\frac{i}{\xi} k^{2} k^{\mu} D_{\mu \nu}(k)+k_{\nu}=0 \tag{31}
\end{equation*}
$$

If we now write

$$
\begin{equation*}
D_{\mu \nu}(k)=P_{\mu \nu}^{T} D_{T}\left(k^{2}\right)+P_{\mu \nu}^{L} D_{L}\left(k^{2}\right) \tag{32}
\end{equation*}
$$

with $k^{\mu} P_{\mu \nu}^{L}=k_{\nu}$, the Ward identity reduces to

$$
\begin{equation*}
\frac{-i}{\xi} k^{2} k_{\nu} D_{L}\left(k^{2}\right)+k_{\nu}=0 \tag{33}
\end{equation*}
$$

and so

$$
\begin{equation*}
D_{L}\left(k^{2}\right)=-\frac{i \xi}{k^{2}} \tag{34}
\end{equation*}
$$

and the longitudinal part of the two-point function is completely determined. Comparing this with (21), we find that $f_{L}\left(k^{2}\right)=0$, and we thus conclude that $\Pi^{\mu \nu}$ is purely transverse. That is, from (19), we have that

$$
\begin{equation*}
\Pi^{\mu \nu}=\left(\eta^{\mu \nu}-\frac{k^{\mu} k^{\nu}}{k^{2}}\right) f_{T}\left(k^{2}\right) \tag{35}
\end{equation*}
$$

For $\Pi^{\mu \nu}(k)$ to be non-singular at $k=0$, we must have

$$
\begin{equation*}
f_{T}\left(k^{2}\right)=k^{2} \Pi\left(k^{2}\right) \tag{36}
\end{equation*}
$$

where $\Pi(0)$ is non-singular. Hence, for the two-point function in the interacting theory, we have

$$
\begin{equation*}
D_{\mu \nu}=\frac{-i}{k^{2}-i \epsilon}\left[\frac{P_{\mu \nu}^{T}}{1-\Pi\left(k^{2}\right)}+\xi P_{\mu \nu}^{L}\right] \tag{37}
\end{equation*}
$$

Remarks:

1. The longitudinal part of $D_{\mu \nu}$ does not receive any loop corrections: it is completely determined by the Ward identities. The physics should not depend on this part. For example, in the Landau gauge, $\xi=0$, $D_{\mu \nu}$ is purely transverse.
2. \quad Since $\Pi\left(k^{2}\right)$ is non-singular at $k^{2}=0$, the photon remains massless to all orders. There are exceptions to this: it is not true in quantum electrodynamics in $1+1$ dimensions, or in theories where an additional Higgs field is introduced.
3. The residue at the $k^{2}=0$ pole is given by $Z_{3}^{-1}=1-\Pi(0)$, and we have that

$$
\begin{equation*}
i D_{\mu \nu}^{T} \approx \frac{Z_{3}}{k^{2}-i \epsilon} P_{\mu \nu}^{T} \tag{38}
\end{equation*}
$$

near $k^{2}=0$. The renormalized field is given by $A_{\mu}^{B}=\sqrt{Z_{3}} A_{\mu}$.

MIT OpenCourseWare
http://ocw.mit.edu

8.324 Relativistic Quantum Field Theory II

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

