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Lecture 11 

2.5: S-MATRIX ELEMENTS AND LSZ REDUCTION 

Having studied in detail the general structure of two-point functions, let us now look at the general structure of 
higher-point functions. These are of course much more complicated, and the power of Lorentz and translational 
symmetries becomes much more limited. Nevertheless, there are some important statements to be made. We again 
consider a scalar field for illustration. Generalizations to spinors, vectors and multiple fields do not contain addi
tional conceptual insights. 

We consider 
GF (x1, . . . , xn) ≡ ⟨0| T (ϕ(x1) . . . ϕ(xn)) |0⟩ , (1) 

where |0⟩ is the exact vacuum of the interacting state, and the Fourier transform is given by 

xn e
−i(p1.x1+...+pn.xnGF (p1, . . . , pn) ≡ 

ˆ 
d4 x1 . . . d

4 )GF (x1, . . . , xn), (2) 

where pµ = (ωi, ⃗pi). Now, by translational invariance, we have that GF (x1, . . . , xn) = G(0, x2 − x1, . . . , xn − x1),i 
and so 

GF (p1, . . . , pn) ∝ (2π)4δ(4)(p1 + . . . + pn). (3) 

Now, if we consider any combination of these momenta, for example 

p ≡ p1 + p2 + . . . + pr = −(pr+1 + . . . + pn), 1 ≤ r ≤ n − 1, (4) 

then GF (p1, . . . , pn) has a pole at p2 = −m2 
i , where mi is the mass of a single-particle state. 

Proof : Let us first consider r = 1, that is, consider 

x e−ip.xGF (p, y1, . . . , yn−1) = 
ˆ 

d4 ⟨0| T (ϕ(x)ϕ(y1) . . . ϕ(yn−1)) |0⟩ . (5) 

The integration over x0 = t can be separated into three regions: ˆ ˆ ˆ ˆ
dt = dt + dt + dt, 

I II III ˆ ˆ T+ 
ˆ T� − 

= dt + dt + dt 
T+ T− −� 

where T− < y1
0, . . . yn

0 
−1 < T+. In region I, 

GF (x, y1, . . . yn−1) = ⟨0| ϕ(x)T (ϕ(y1) . . . ϕ(yn−1)) |0⟩ . (6) 

We can now use the same trick as in the case of the two-point function, inserting a complete set of physical states: ∑ ∑ ̂  
d3k⃗ 1 ∣∣ ⟩⟨ ∣∣ 

1 = |n⟩ ⟨n| = 
(2π)3 

2ω
∣j, ⃗k j, ⃗k∣ + multi-particle states, (7) 

(j)

n j k⃗
√ 

where ω
k⃗ 

(j) 
= k⃗2 + mj 

2 . For simplicity, let us consider a single species. Then, we have that 

d3k⃗ 1 ⟨ ⟩⟨ ⟩ 
⃗ ⃗GF (x, y1, . . . , yn−1) = 

ˆ 
(2π)3 2ωk⃗ 

0 |ϕ(x)| k k |T (ϕ(y1) . . . ϕ(yn−1))| 0 

= 
ˆ 

(2

d

π

3k⃗ 
)3 2ω

1 

k⃗ 

e ik.x
√
Z 
⟨ 
k⃗ |T (ϕ(y1) . . . ϕ(yn−1))| 0 

⟩ 
, 
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� 

and so, for the integral over region I, we have 

iωt−ip⃗.x⃗ ⃗I = 
√
Z 
ˆ � 

dt 
ˆ 

dx⃗e 
ˆ 

(2

d

π

3k⃗ 
)3 2ω

1 

⃗

⟨ 
k |T (. . .)| 0 

⟩ 

T+	 k 

p)T+ 

= 
√
Z 
2ω

1 

p⃗ ω

iei

− 

(ω

ω

−

p⃗

ω⃗

+ iϵ 
⟨p⃗| T (. . .) |0⟩ 

−−−−
ω�ω

→
⃗

√
Z 

−i 
− iϵ 

⟨p⃗ T (. . .) |0⟩ . 
p p2 + m2 

| 

Similarly, for the integral over region III, we find 

−i 
III −−−−−→

√
Z
p2 + m2 − iϵ 

⟨0| T (. . .) |−p⃗⟩ .	 (8) 
pω�−ω⃗

Region II is a compact integral, so it does not have singular behaviour. So we conclude that, as a function of p, 

−i
√
Z 

GF (p, . . .) −−−−→ 
p2 + m2 − iϵ 

⟨p⃗| T (. . .) |0⟩ , 
pω�ω⃗

−−−−−→
p2 + 

−i

m

√

2 

Z 
− iϵ 

⟨0| T (. . .) |−p⃗⟩ . 
pω�−ω⃗

The above argument can be generalized to any r. Consider p = p1 + . . . + pr = −(pr+1 + . . . + pn). Among all 
possible orderings of t1, . . . , tn, we consider those with min{t1, . . . , tr} > max{tr+1, . . . , tn}. In this case, we have 

GF (x1, . . . , xn) = �(τ) ⟨0| T (ϕ(x1) . . . ϕ(xr))T (ϕ(xr+1) . . . ϕ(xn)) |0⟩ + other orderings, (9) 

with τ = min{t1, . . . , tr} − max{tr+1, . . . , tn}. Hence, inserting a complete set of intermediate states, including 
one-particle states, we have 

d3k⃗ 1 ⟨ ⟩⟨ ⟩ 
GF (x1, . . . , xn) = �(τ) 

ˆ 
(2π)3 2ω⃗

0 |T (ϕ(x1) . . . ϕ(xr)| ⃗k k⃗ |T (ϕ(xr+1) . . . ϕ(xn))| 0 , (10) 
k 

and we proceed to take the Fourier transform GF (x1, . . . , xn) −→ GF (p1, . . . , pn). The analysis of the Fourier 
transform is a bit more intricate than the r = 1 case. The details are left to the reader; they can be found in 
Weinberg, Volume I, §10.2. The result is that 

GF (p1, . . . , pn) −−−−−
p0�E

→
p⃗

(2π)
4 
δ(4) (p1 + . . . + pn) 

−i 
− iϵ 

(p2, . . . , pr p|0(pr+2, . . . , pn) (11) 
p2 + m2 

M0|p⃗ )M⃗

yr e
−ip2�y2−...−ipr �yr 

where 

M0|p⃗(p2, . . . , pr) = 
ˆ 

d4 y2 . . . d
4	 ⟨0| T (ϕ(0)ϕ(y2) . . . ϕ(yr)) |p⃗⟩ , (12) 

and	

Mp⃗|0(pr+2, . . . , pn) = 
ˆ 

d4 yr+2 . . . d
4 yn e

−ipr+2�yr+2−...−ipn�yn ⟨p⃗| T (ϕ(0)ϕ(yr+2) . . . ϕ(yn)) |0⟩ . (13) 

Remarks: 

1.	 The result is generally valid for any interacting theory, and is non-perturbative in nature. In particular, 
as in the case of the two-point function, the single-particle states do not have to correspond to fields 
which appear in the Lagrangian. Further, ϕ does not have to be a fundamental field appearing in the 
Lagrangian: the same conclusion applies if one uses composite operators. For example, in quantum 
chromodynamics, pions can appear as such a pole. 

2.	 The result is physically intuitive. Diagramatically, it can be expressed as, when p = p1 + . . . + pr is close 
to on-shell for a particle of mass m, 
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pr pr+1 pr pr+1 

. pr+2 .. pr+2. . 
0

|p⃗⟩ ⟨p⃗| , (14) 
.. 

−−−−→ . 
. p �ωp⃗ p2p2 . . . 

p1 pn p1 pn 

where the internal propagator contributes a factor of −i . Similarly,p2+m2−iϵ 

pr pr+1 pr pr+1 

. pr+2 .. pr+2. . . 
p⟩ 

⟨−⃗ . (15) 
. 

−−−−−−
p0 

→ |−⃗
p| 

.p2 . �−ωp⃗ p2 . . . 
p1 pn p1 pn 

2.5.2: LSZ Reduction 

Now, let us take p1, p2 to be simultaneously on-shell. That is, p01 ≈ −ωp⃗1 , p
0
2 ≈ −ωp⃗2 . Then the Green’s function is 

given by 
−i

√
Z1 −i

√
Z2

GF (p1, p2, . . . , pn) −→ 
p2 + m2

1 − iϵ p2 + m2
2 − iϵ 

⟨p⃗| T (ϕ3(x3) . . . ϕn(xn)) |−p⃗1, −p⃗2⟩ . (16) 

If we now take pn 
0 ≈ ωp⃗3 , . . . , pn 

0 ≈ ωp⃗n , we find √ n∏ −i Zj
GF (p1, p2, . . . , pn) −→ 

p2 + mj 
2 − iϵ 

⟨p⃗3, . . . , ⃗pn| −p⃗1, −p⃗2⟩ , (17) 
j=1 

giving the S−matrix element ⟨p⃗3, . . . , ⃗pn| −p⃗1, −p⃗2⟩ . This suggests that we can calculate the S-matrix elements 
using Feynman diagrams as follows: 

1. Consider all Feynman diagrams for the Green’s function G(p1, . . . , pn). 

2. Put all the external momenta on shell: {
pi 
0 → −ωp⃗i for initial momenta, 

(18) 
p0 
f ωp⃗f for final momenta.→ 

3. Obtain amptutated amplitudes by discarding the external propagators. 

−i
�
Z4. Since an external propagator behaves as p2+m2−iϵ near the mass-shell, we have 

pr pr+1 

n √ ..∏ pr+2 
(19) 

.
⟨f | i⟩ = Zj 

p2 

. 
.j=1 . 

p1 pn 

where the shaded vertex denotes all amputated diagrams. 

2.6: THE OPTICAL THEOREM 

The optical theorem is a simple consequence of the unitarity of the S-matrix. Since 

S†S = 1, (20) 

where it is convential to write S = 1 + iT , we have that 

−i(T − T †) = T †T. (21) 

We now take the matrix elements of this equation between some states 

−i ⟨b| (T − T †) |a⟩ = ⟨b| T †T |a⟩ (22) 
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where we have ⟨b| T |a⟩ ≡ M(a → b), and so ⟨b| T † |a⟩ = M(b → a)∗. Inserting a complete set of states into the 
right-hand side of this equation, we obtain ∑ 

⟨b| T †T |a⟩ = ⟨b| T † |n⟩ ⟨n| T |a⟩ 
n ∑ 

= M(a n)M(b n)∗,→ → 
n 

and so we obtain the result ∑ 
2 −i [M(a → b) − M(b → a)∗] = |M(a → n)| . (23) 

n 

In particular, if we take a = b, we find ∑ 
2

2Im(M(a → a)) = |M(a → n)| , (24) 
n 

relating the imaginary part of forward scattering to the total cross section. This result can also be applied order-
by-order in perturbation theory. Recall the example we discussed in lecture 10: 

2Im( ) = 

∣∣∣∣∣∣∣ 
∣∣∣∣∣∣∣ 
2 

. (25) 
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