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2.4: UNSTABLE PARTICLES AND RESONANCES 

We recall from previous lectures that the Feynman propagator for a general interacting theory is given by 

GF (p 2) = Γ(s = −p 2 + iϵ), (1) 

where ∑ iZj 
ˆ ∞ 

2) 
i 

+ dµ2 σ(µ2

j 4m2


Γ(s) = , (2) 
s − µ2s − m

j 1 

and the spectral density function is given by ∣∣ 
p2 2 )=−µ

ρ(µ 2) = 
1 
Im( iGF (p 2)

π∑ 
= Zj δ(µ 2 − mj 

2) + σ(µ 2). 
j 

For µ2 > 4m1
2 , we have that ρ(µ2) = σ(µ2) = 2

1 
π Disc(Γ(s)|s=µ2 ). The reason for this is that we cannot have 

Figure 1: Plots of the function Γ(s) on the complex plane and the spectral density function ρ(µ2). 

mj 
2 > 4m1

2 for any particle j which interacts with the others. We can imagine changing the parameters of the 
theory, so that the pole moves beyond the branch point and sits on the branch cut. We will consider what happens 
in this case. Consider the Lagrangian 

L = − 
2

1
(∂ϕ)2 − 

2

1
(∂χ)2 + 

2

1 
mϕ

2 ϕ2 + 
2

1 
mχ

2 χ2 + 
2

1 
gϕϕ

3 + · · · , (3) 

and examine the Feynman propagator GF
ϕ (p2). Suppose that 2mχ > mϕ > mχ. Then, perturbatively, 

iGϕ (p 2) = 
1 

. (4) F 2p2 + mϕ − Π(ϕ)(p2) − iϵ 

The three-point vertex rule is given by 

ϕ 

= ig, (5) 
χ 

ϕ 

and hence, to lowest order, 

Π(ϕ)(p 2) = , (6) 

1 
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and we see that Π(ϕ)(p2) becomes imaginary if −p2 > 4mχ
2 . Naively, the pole just sits on the branch cut. But, as 

we will show, the pole, in fact, moves to the other sheet of the complex plane. Physically, the particle becomes 
unstable since it can decay ϕ −→ 2χ, where the imaginary part of the pole is proportional to the decay rate. In the 
Hilbert space of physical states, no states correspond to a single ϕ-particle. It becomes a resonance. 

Figure 2: Formation of an unstable resonance for mϕ > 2mχ. 

From the last lecture, after subtracting divergences using counter-terms, 

Π(ϕ)(p 2) = 
ϕ 

= 
α 
ˆ 1 

dx D log D − a′p 2 − b′mϕ
2 , (7) 

2 0 

2 

where α ≡ g , D = mχ 
2 + x(1 − x)p2 , and a ′ and b′ are finite real constants, determined by the physical mass (4π)3 

and physical field conditions: 

Π(p 2 = −m 2) = 0, 

dΠ 
dp2 

(p 2 = −m 2) = 0. 

But, for m2 > 4m2 
χ, log D is complex at p2 = −m2 , and there is no way to satisfy these two conditions for real a ′ ϕ ϕ

and b′ . Therefore, GF 
(ϕ)

(p2) cannot have a pole on the real axis. Physically, ϕ cannot be a physical single-particle 
state in H . What can be done to resolve this is to modify the physical mass and physical field conditions to: 

(Re 
(
Π(p 2 = −m 2))) 

=0, 

Re 
dΠ

(p 2 2) = 0. 
dp2 

= −m 

which gives suitable real solutions for a ′ and b′ . We then have 

α 
ˆ 1 D α 2 2Π(p 2) = 

2 0 
dx D log 

D0
− 

12
(p + mϕ) (8) 

| | 
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with D0 = D(p2 = −m2 
ϕ) = m2 

χ − x(1 − x)m2 
ϕ. Let us define mϕΓ̃ ≡ ImΠ(p2) 2 2 

ϕ, we . Then, near p = −m
p2=−m2 

ϕ 

have 

iGF (p 2) = 
p2 + m2 

ϕ − 
1

Π(p2) − iϵ 

1 
= . 
p2 + mϕ 

2 − imϕΓ̃

Thus, there is a pole at p2 = −mϕ 
2 + imϕΓ̃. In terms of the complex function Γ(s), there is a pole at 

s = mϕ 
2 − imϕΓ̃, (9) 

and so, around the ϕ-mass, the spectral density function takes the form 

1	 1 mϕΓ̃
ρ(µ 2) 2)) = Im(iGF (p +	 (10)· · · .= 2≈m2 

ϕ 2 2 Γ̃2π π (µ2 − m )2 + mµ
ϕ ϕ 

Now we proceed to calculate Γ̃ : 

α 
ˆ 1 D0

dx Im(D0 log
2 0 

Im(Π(p 2) ) = ),	 (11)
p2=−m2 

ϕ D0| | 

where D0 = mχ 
2 − x(1 − x)mϕ 

2 − iϵ. Now, D0 < 0 for the range √√ 
1 1 4mχ 

2 1 1 4mχ 
2 

2 
− 

2
1 − 

mϕ 
2 < x < 

2
+

2 
1 − 

mϕ 
2 ,	 (12) 

√ 
2 
χD0	 = 

4m
and in this region, log = −iπ. Therefore, letting β 1 − , we have 2 

ϕ
|D0 | m

1 
2 (1+β) 

Im(Π(−m 2 
ϕ)) = − 

απ 
ˆ

2 
2 2 
χ − x(1 − x)mϕ)dx (m 

1 
2 (1−β) 

= 
πα 

mϕ
2 β3 ,

12 

and hence, 
˜ πα 

mϕβ
3Γ = .	 (13)

12 
In the problem set, we will see that when mϕ > 2mχ, we have 

2πα 4m
) 

3 
2 , (14)

χ
Γ̃ϕ 2χ = →

12 
mϕ(1 − 

m2 
ϕ 

and so ˜ Γϕ 2χ. We now consider a couple of additional points. Γ = ˜ →

Remarks: 

1.	 Consider the function log z. The function increases by 2π as we wrap around the origin each time. This 
introduces a discontinuity if we try to plot the function on one sheet of the complex plane. Instead, 
we have to plot the function on multiple sheets, introducing a branch cut, for example on the first 
sheet at Im (log(−x + iϵ)) = iπ, Im (log(−x − iϵ)) = −iπ. Similarly, with Γ(s), there is a branch cut at 
x = 4mχ

2 . When we calculated 

GF (p 2) = 
1 

(15) 
p2 + m2 

ϕ − imϕΓ̃

we treated it as an analytic function across the real axis. In other words, we have done the analytic 
continuation below the cut, and so, the pole lies on the second sheet. 
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Figure 3: The branch cut in log(s) and the additional sheets needed to plot the function smoothly. 

Figure 4: The branch cut in Γ(s) with the second sheet on which the pole lies. 

2. One can show that, as a consequence of the optical theorem, 

Im(Π(p 2)) = 

∣∣∣∣∣∣∣ 
∣∣∣∣∣∣∣ 
2 

(16)= , 

where the propagators are put on shell, replaced by 2πδ(p1
2 + mχ

2 )Θ(p1
0). This will be discussed in the 

problem set. 

3.	 Considering the propagation of an unstable particle, for t > 0, 

dw 1 
GF (t, ⃗p) = ⟨ϕ(t, ⃗p)ϕ(0, ⃗p)⟩ = 

ˆ 
2π

e−iωt 

p2 + m2 − imΓ̃
, (17) 

with p2 = −ω2 + p⃗2 . Hence, √ 

e
−i ω

p
2 −im�̃t
⃗

GF (t, ⃗p) = √ (18) 
ωp 
2 − imΓ̃⃗√ 

p2 + m2	 p⃗⃗ . Now, for the case that Γ̃ ≪ 
ω2 

with ωp⃗ ≡ , this reduces to m 

m�1 
e
−iωp⃗t− 2ω

˜

p⃗
t 

GF (t, ⃗p) = 
2ωp⃗

t 

= p) 
1 

e−iωp⃗t− 
2τ (⃗

2ωp⃗

p 1where we have defined the lifetime τ(p⃗) ≡ ωm 
⃗ Γ̃−1 = √

1−v
Γ̃−1, which we recognise as the effect of time 

2 

dilation, where Γ̃−1 is the lifetime of the particle in its rest frame. 
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