In general, $A=\int d \xi^{1}, d \xi^{2} \sqrt{g}$

Note a line moving along in ξ^{1} direction is not necessarily orthogonal to a line moving in ξ^{2} direction.

$$
\begin{aligned}
& d \vec{v}_{1}=\left(d \xi^{1}, 0\right) \\
& d \vec{v}_{2}=\left(0, d \xi^{2}\right)
\end{aligned}
$$

2D: no reference to 3D space, just 2D space param. by ξ^{1} and ξ^{2}

$$
\begin{gathered}
\left(\overrightarrow{v_{\mathbf{2}}}\right. \\
d A=\left|d \vec{v}_{1} \| d \vec{v}_{2}\right| \sin \theta \\
d \vec{v}_{1} \cdot d \vec{v}_{2}=g_{i j} d v_{1}^{i} d v_{2}^{j}=g_{12} d \xi^{1} d \xi^{2} \\
d A=\sqrt{\left[g_{11}(d \xi)^{2}\right]\left[g_{22}\left(d \xi^{2}\right)^{2}\right]-\left[g_{12} d \xi^{1} d \xi^{2}\right]^{2}} \\
=d \xi^{1} d \xi^{2} \sqrt{g_{11} g_{22}-g_{12}^{2}} \\
=d \xi^{1} d \xi^{2} \sqrt{\operatorname{det}\left(g_{i j}\right)}
\end{gathered}
$$

Works in any number of dimensions (though here proved only for 2)

Generalization to n dimensions

Metric always a square matrix with a determinant.
Consider generalized parallelopiped in N dimensions. Volume in terms of corner vectors? (Standard from N-dim Euclidean geometry)

$$
\mathrm{Vol}=\operatorname{det}\left[V_{i}^{k}\right]
$$

where k is the vector index and i is the v_{i} subscripts $[1, \ldots, N]$
Can construct orthogonal vector sets

v_{2}^{\prime} involves adding or subtracting as much of v_{1} to v_{2} to get orthogonality. Shifts parallelopiped into rectangle without changing volume. Every operation is determinant-invar.

