Lecture 8

In general, $A=\int d\xi^1, d\xi^2\sqrt{g}$

Note a line moving along in ξ^1 direction is not necessarily orthogonal to a line moving in ξ^2 direction.

$$d\vec{v}_1 = (d\xi^1, 0)$$

 $d\vec{v}_2 = (0, d\xi^2)$

2D: no reference to 3D space, just 2D space param. by ξ^1 and ξ^2

$$dA = |d\vec{v}_1| |d\vec{v}_2| \sin \theta$$
$$(d\vec{v}_1)^2 = g_{ij} dv_1^i dv_1^j = g_{11} (d\xi^1)^2$$
$$d\vec{v}_1 \cdot d\vec{v}_2 = g_{ij} dv_1^i dv_2^j = g_{12} d\xi^1 d\xi^2$$

$$dA = \sqrt{[g_{11}(d\xi)^2][g_{22}(d\xi^2)^2] - [g_{12}d\xi^1d\xi^2]^2}$$

= $d\xi^1 d\xi^2 \sqrt{g_{11}g_{22} - g_{12}^2}$
= $d\xi^1 d\xi^2 \sqrt{\det(g_{ij})}$

Works in any number of dimensions (though here proved only for 2)

Generalization to n dimensions

Metric always a square matrix with a determinant. Consider generalized parallelopiped in N dimensions. Volume in terms of corner vectors? (Standard from N-dim Euclidean geometry)

$$\boxed{\mathrm{Vol} = det[V_i^k]}$$

where k is the vector index and i is the v_i subscripts $[1, \ldots, N]$

Can construct orthogonal vector sets

 v'_2 involves adding or subtracting as much of v_1 to v_2 to get orthogonality. Shifts parallelopiped into rectangle without changing volume. Every operation is determinant-invar.