Lecture 3 - Topics

- Relativistic electrodynamics.
- Gauss' law
- Gravitation and Planck's length

Reading: Zwiebach, Sections: 3.1-3.6

Electromagnetism and Relativity

Maxwell's Equations

Source-Free Equations:

$$
\begin{align*}
& \nabla \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \tag{1}\\
& \nabla \cdot \vec{B}=0 \tag{2}
\end{align*}
$$

With Sources (Charge, Current):

$$
\begin{align*}
& \nabla \cdot \vec{E}=\rho \tag{3}\\
& \nabla \times \vec{B}-\frac{1}{c} \frac{\partial \vec{E}}{\partial t}=\frac{1}{c} \vec{J} \tag{4}
\end{align*}
$$

Notes:

1. E and B have same units.
2. ρ is charge density [charge/volume]. Here no 0 or 4π - those constants would get messy in higher dimensions.
3. \vec{J} is current density [current/area]
\vec{E}, \vec{B} are dynamical variables.

$$
\frac{d \vec{p}}{d t}=q\left(\vec{E}+\frac{1}{c} \vec{v} \times \vec{B}\right)
$$

Solve the source free equations

$\nabla \cdot \vec{B}=0$ solved by $\vec{B}=\nabla \times \vec{A}$. (Used to have $\nabla \times \vec{E}=0, E=-\nabla \Phi)$
True equation:

$$
\begin{aligned}
\nabla \times \vec{E}+\frac{1}{c} \frac{\partial}{\partial t}(\nabla \times \vec{A}) & =\nabla \times \vec{E}+\frac{1}{c} \nabla \times\left(\frac{\partial \vec{A}}{\partial t}\right) \\
& =\nabla \times\left(\vec{E}+\frac{1}{c} \frac{\partial \vec{A}}{\partial t}\right)=0
\end{aligned}
$$

So:

$$
\vec{E}+\frac{1}{c} \frac{\partial \vec{A}}{\partial t}=-\nabla \Phi \quad(\Phi \text { scalar })
$$

Thus:

$$
\vec{E}=-\nabla \Phi-\frac{1}{c} \frac{\partial \vec{A}}{\partial t}
$$

(\vec{E}, \vec{B}) encoded as (Φ, \vec{A})
Φ, A are the fundamental quantities we'll use

Gauge Transformations

$$
\begin{gathered}
\vec{A} \rightarrow \overrightarrow{A^{\prime}}=\vec{A}+\nabla \\
\vec{B}^{\prime}=\nabla \times A^{\prime}=\nabla \times(A+\nabla)=\vec{B}
\end{gathered}
$$

function of $\vec{x}, t . \nabla$ function $=$ vector.

$$
\begin{gathered}
\Phi \rightarrow \Phi^{\prime}=\Phi-\frac{1}{c} \frac{\partial}{\partial t} \\
\vec{E}^{\prime}=-\nabla\left(\Phi^{\prime}\right)=-\nabla\left(\Phi-\frac{1}{c} \frac{\partial}{\partial t}\right)-\frac{1}{c} \frac{\partial}{\partial t}(A+\nabla)=\vec{E}
\end{gathered}
$$

So under gauge transformations, \vec{E} and \vec{B} fields unchanged!

$$
(\Phi, \vec{A}) \stackrel{\leftrightarrow}{\text { g.t. }}\left(\Phi^{\prime}, \vec{A}^{\prime}\right) \quad \text { (Physically equivalent) }
$$

Suppose 2 sets of potentials give the same \vec{E} 's and \vec{B} 's. Not guaranteed to be gauge-related.

Suppose we have 4-vector $A^{\mu}=(\Phi, \vec{A})$ then $A \mu=(-\Phi, \vec{A})$

Take $\frac{\partial}{\partial x^{\mu}}$. Have indices from $\frac{\partial}{\partial x^{\mu}}$ and from A^{μ} so will get a 4 x 4 matrix. Have two important quantities $(E$ and B) with 3 components each $\Rightarrow 6$ important quantities. Hint that we should get a symmetric matrix.

$$
\begin{gathered}
F_{\mu \nu}=\frac{\partial A_{\nu}}{\partial x^{\mu}}-\frac{\partial A_{\mu}}{\partial x^{\nu}}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \\
F_{\mu \nu}=-F_{\nu \mu} \\
F_{o i}=\frac{1}{c} \frac{\partial A_{i}}{\partial t}-\frac{\partial}{\partial x^{i}}(-\Phi)=-E_{i} \\
F_{12}=\partial_{x} A_{y}-\partial_{y} A_{x}=B_{z} \\
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & B_{z} & -B_{y} \\
E_{y} & -B_{z} & 0 & B_{x} \\
E_{z} & B_{y} & -B_{x} & 0
\end{array}\right)
\end{gathered}
$$

What happens under gauge transformation?

$$
A_{\mu} \rightarrow A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu}
$$

Then get:

$$
\begin{aligned}
F_{\mu \nu}^{\prime} & =\partial_{\mu} A_{\nu}^{\prime}-\partial_{\nu} A_{\mu}^{\prime} \\
& =\partial_{\mu}\left(A_{\nu}+\partial_{\nu}\right)-\partial_{\nu}\left(A_{\mu}+\partial_{\mu}\right) \\
& =F_{\mu \nu}+\partial_{\mu} \partial_{\nu}-\partial_{\nu} \partial_{\mu} \\
& =F_{\mu \nu}
\end{aligned}
$$

Define:

$$
T_{\lambda \mu \nu}=\partial_{x} F_{\mu \nu}+\partial_{\mu} F_{\nu \lambda}+\partial_{\nu} F_{\lambda \mu}
$$

Note indices are cyclic.
Some interesting symmetries:

$$
\begin{aligned}
& T_{\lambda \mu \nu}=-T_{\mu \lambda \nu} \\
& T_{\lambda \mu \nu}=-T_{\lambda \nu \mu}
\end{aligned}
$$

So $T_{\lambda \mu \nu}$ is totally antisymmetric. A totally symmetric object in 4 D has only 4 nontrivial components so $T_{\lambda \mu \nu}=0$ gives you 4 equations.

$$
T_{\lambda \mu \nu}=0=\partial_{\lambda}\left(-\partial_{\nu} A_{\mu}\right)+\partial_{\mu}\left(\partial_{\nu} A_{\lambda}\right)+\partial_{\nu}\left(\partial_{\lambda} A_{\mu}-\partial_{\mu} A_{\lambda}\right)
$$

Charge Q is a Lorentz invar. Not everything that is conserved is a Lorentz invar. eg. energy. Since Q is both conserved and a Lorentz invar, $(c \rho, \vec{J})$ form a 4-vector J^{μ}

Now let's do what a typical theoretical physicist does for a living: guess the equation!

$$
\begin{gathered}
F^{\mu \nu} \approx J^{\mu} \quad \text { No, derivatives not right. } \\
\partial F^{\mu \nu} / \partial x^{\nu} \approx J^{\mu} \quad \text { No, constants not right. } \\
F^{\mu \nu} / \partial x^{\mu}=\frac{1}{c} J^{\mu} \quad \text { Correct, amazingly! (even sign) }
\end{gathered}
$$

$\mu=0:$

$$
\begin{gathered}
\partial F^{0 \nu} / \partial x^{\nu}=\rho \\
\partial F^{0 i} / \partial x^{i}=\rho \\
F_{0 i}=-E_{i} \\
F^{0 i}=E_{i}
\end{gathered}
$$

So $\nabla \cdot \vec{E}=\rho$ verified!

Electromagnetism in a nutshell:

$$
\begin{aligned}
F_{\mu \nu} & =\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \\
\frac{\partial F^{\mu \nu}}{\partial x^{\nu}} & =\frac{J^{\mu}}{c}
\end{aligned}
$$

Consider electromagnetism in 2D xy plane. Get rid of E_{z} component:

$$
F_{\mu \nu}=\left(\begin{array}{ccc}
0 & -E_{x} & -E_{y} \\
E_{x} & 0 & B_{z} \\
E_{y} & -B_{z} & 0
\end{array}\right)
$$

But what about B_{z} ? Doesn't push particle out of the plane $\left(v \times B_{z}\right.$ with v in the xy plane remains in xy plane) but rename B_{z} as B, a scalar.

How about in 4D spatial dimensions?

$$
F=\left(\begin{array}{ccccc}
& -E_{x} & -E_{y} & -E_{z} & -E_{N} \\
& 0 & * & * & * \\
& 0 & * & * \\
& & 0 & * \\
& & & & 0
\end{array}\right)
$$

So get tensor B !
It's a coincidence that in our 3D spacial world E and B are both vectors.
Let's look at $\nabla \cdot \vec{E}=\rho$ in all dimensions.

Notation: Circle S^{\prime} is a 1 D manifold, the boundary of a ball B^{2}

Sphere $S^{2}(R): x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=R^{2}$
Ball $B^{3}(R): x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq R^{2}$

When talking about $S^{2}(R)$, call it $S^{2}(R=1$ implied)
$\operatorname{Vol}\left(S^{1}\right)=2 \pi$
$\operatorname{Vol}\left(S^{2}\right)=4 \pi$
$\operatorname{Vol}\left(S^{3}\right)=2 \pi^{2}$

$$
\operatorname{Vol}\left(S^{d-1}\right)=\frac{2 \pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2}\right)}
$$

All you need to know about the Gamma function:

$$
\begin{gathered}
\Gamma(1 / 2)=\sqrt{\pi} \\
\Gamma(1)=1 \\
\Gamma(x+1)=x \Gamma(x) \\
\Gamma(n)=(n-1)!\text { for } n \in Z \\
\Gamma(x)=\int_{0}^{\infty} d t e^{-t} t^{x-1} \text { for } x>0
\end{gathered}
$$

Calculating $\nabla \cdot \vec{E}$ in $d=3$ and general d dimensions. $d=3$:

$$
\int_{B^{3}(r)} \nabla \cdot \vec{E} d(\mathrm{vol})=\int_{B^{3}(r)} \rho d(\mathrm{vol})=q
$$

This represents the flux of \vec{E} through $S^{2}(r)$

$$
E(r) \cdot \operatorname{vol}\left(S^{2}(r)\right)=q
$$

$$
\begin{aligned}
& E(r) \cdot 4 \pi r^{2}=q \\
& E(r)=\frac{1}{4 \pi} \frac{q}{r^{2}}
\end{aligned}
$$

This falls off much faster at large r and increases much faster as small r.
General d :

$$
\int_{B^{d}(r)} \nabla \cdot \vec{E} d(\mathrm{vol})=\int_{B^{d}(r)} \rho d(\mathrm{vol})=q
$$

This represents the flux of \vec{E} through $S^{d-1}(r)$

$$
\begin{gathered}
E(r) \cdot \operatorname{vol}\left(S^{d-1}(r)\right)=q \\
E(r)=\frac{\Gamma(d / 2)}{2 \pi^{d / 2}} \frac{q}{r^{d-1}}
\end{gathered}
$$

Electric field of a point charge in d dimensions.
If there are extra dimensions, then would see larger E at very small distances.

