Lecture 3 - Topics

- Relativistic electrodynamics.
- Gauss' law
- Gravitation and Planck's length

Reading: Zwiebach, Sections: 3.1 - 3.6

Electromagnetism and Relativity

Maxwell's Equations

Source-Free Equations:

$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \tag{1}$$

$$\nabla \cdot \vec{B} = 0 \tag{2}$$

With Sources (Charge, Current):

$$\nabla \cdot \vec{E} = \rho \tag{3}$$

$$\nabla \times \vec{B} - \frac{1}{c} \frac{\partial \vec{E}}{\partial t} = \frac{1}{c} \vec{J}$$
(4)

Notes:

1. E and B have same units.

3. ρ is charge density [charge/volume]. Here no $_0$ or 4π - those constants would get messy in higher dimensions.

4. \vec{J} is current density [current/area]

 \vec{E}, \vec{B} are dynamical variables.

$$\frac{d\vec{p}}{dt} = q\left(\vec{E} + \frac{1}{c}\vec{v}\times\vec{B}\right)$$

Solve the source free equations

 $\nabla \cdot \vec{B} = 0$ solved by $\vec{B} = \nabla \times \vec{A}$. (Used to have $\nabla \times \vec{E} = 0, E = -\nabla \Phi$)

True equation:

$$\nabla \times \vec{E} + \frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \vec{A}) = \nabla \times \vec{E} + \frac{1}{c} \nabla \times \left(\frac{\partial \vec{A}}{\partial t} \right)$$
$$= \nabla \times \left(\vec{E} + \frac{1}{c} \frac{\partial \vec{A}}{\partial t} \right) = 0$$

So:

$$\vec{E} + \frac{1}{c} \frac{\partial \vec{A}}{\partial t} = -\nabla \Phi \qquad (\Phi \text{ scalar})$$

Thus:

$$\vec{E} = -\nabla \Phi - \frac{1}{c} \frac{\partial \vec{A}}{\partial t}$$

 (\vec{E},\vec{B}) encoded as (Φ,\vec{A})

 Φ , A are the fundamental quantities we'll use

Gauge Transformations

$$\vec{A} \to \vec{A}' = \vec{A} + \nabla$$
$$\vec{B}' = \nabla \times A' = \nabla \times (A + \nabla) = \vec{B}$$

function of \vec{x}, t . ∇ function = vector.

$$\Phi \to \Phi' = \Phi - \frac{1}{c} \frac{\partial}{\partial t}$$
$$\vec{E}' = -\nabla(\Phi') = -\nabla\left(\Phi - \frac{1}{c} \frac{\partial}{\partial t}\right) - \frac{1}{c} \frac{\partial}{\partial t} (A + \nabla) = \vec{E}$$

So under gauge transformations, \vec{E} and \vec{B} fields unchanged!

 $(\Phi, \vec{A}) \stackrel{\leftrightarrow}{g.t.} (\Phi', \vec{A'})$ (Physically equivalent)

Suppose 2 sets of potentials give the same $\vec{E}\text{'s}$ and $\vec{B}\text{'s}.$ Not guaranteed to be gauge-related.

Suppose we have 4-vector $A^{\mu}=(\Phi,\vec{A})$ then $A\mu=(-\Phi,\vec{A})$

Lecture 3

Take $\frac{\partial}{\partial x^{\mu}}$. Have indices from $\frac{\partial}{\partial x^{\mu}}$ and from A^{μ} so will get a 4x4 matrix. Have two important quantities (*E* and *B*) with 3 components each \Rightarrow 6 important quantities. Hint that we should get a symmetric matrix.

$$F_{\mu\nu} = \frac{\partial A_{\nu}}{\partial x^{\mu}} - \frac{\partial A_{\mu}}{\partial x^{\nu}} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

$$F_{\mu\nu} = -F_{\nu\mu}$$

$$F_{oi} = \frac{1}{c}\frac{\partial A_{i}}{\partial t} - \frac{\partial}{\partial x^{i}}(-\Phi) = -E_{i}$$

$$F_{12} = \partial_{x}A_{y} - \partial_{y}A_{x} = B_{z}$$

$$F_{\mu\nu} = \begin{pmatrix} 0 & -E_{x} & -E_{y} & -E_{z} \\ E_{x} & 0 & B_{z} & -B_{y} \\ E_{y} & -B_{z} & 0 & B_{x} \\ E_{z} & B_{y} & -B_{x} & 0 \end{pmatrix}$$

What happens under gauge transformation?

$$A_{\mu} \to A'_{\mu} = A_{\mu} + \partial_{\mu}$$

Then get:

$$F'_{\mu\nu} = \partial_{\mu}A'_{\nu} - \partial_{\nu}A'_{\mu}$$

= $\partial_{\mu}(A_{\nu} + \partial_{\nu}) - \partial_{\nu}(A_{\mu} + \partial_{\mu})$
= $F_{\mu\nu} + \partial_{\mu}\partial_{\nu} - \partial_{\nu}\partial_{\mu}$
= $F_{\mu\nu}$

Define:

$$T_{\lambda\mu\nu} = \partial_x F_{\mu\nu} + \partial_\mu F_{\nu\lambda} + \partial_\nu F_{\lambda\mu}$$

Note indices are cyclic.

Some interesting symmetries:

$$T_{\lambda\mu\nu} = -T_{\mu\lambda\nu}$$
$$T_{\lambda\mu\nu} = -T_{\lambda\nu\mu}$$

So $T_{\lambda\mu\nu}$ is totally antisymmetric. A totally symmetric object in 4D has only 4 nontrivial components so $T_{\lambda\mu\nu} = 0$ gives you 4 equations.

$$T_{\lambda\mu\nu} = 0 = \partial_{\lambda}(-\partial_{\nu}A_{\mu}) + \partial_{\mu}(\partial_{\nu}A_{\lambda}) + \partial_{\nu}(\partial_{\lambda}A_{\mu} - \partial_{\mu}A_{\lambda})$$

Charge Q is a Lorentz invar. Not everything that is conserved is a Lorentz invar. eg. energy. Since Q is both conserved and a Lorentz invar, $(c\rho, \vec{J})$ form a 4-vector J^{μ}

Now let's do what a typical theoretical physicist does for a living: guess the equation!

$$F^{\mu\nu} \approx J^{\mu}$$
 No, derivatives not right.

$$\partial F^{\mu\nu}/\partial x^{\nu} \approx J^{\mu}$$
 No, constants not right.

 $\partial F^{\mu\nu}/\partial x^{\nu} \approx J^{\mu}$ No, constants not right. $F^{\mu\nu}/\partial x^{\mu} = \frac{1}{c}J^{\mu}$ Correct, amazingly! (even sign)

 $\mu = 0$:

$$\frac{\partial F^{0\nu}}{\partial x^{\nu}} = \rho$$
$$\frac{\partial F^{0i}}{\partial x^{i}} = \rho$$
$$F_{0i} = -E_{i}$$
$$F^{0i} = E_{i}$$

So $\nabla \cdot \vec{E} = \rho$ verified!

Electromagnetism in a nutshell:

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$
$$\frac{\partial F^{\mu\nu}}{\partial x^{\nu}} = \frac{J^{\mu}}{c}$$

Consider electromagnetism in 2D xy plane. Get rid of E_z component:

$$F_{\mu\nu} = \begin{pmatrix} 0 & -E_x & -E_y \\ E_x & 0 & B_z \\ E_y & -B_z & 0 \end{pmatrix}$$

But what about B_z ? Doesn't push particle out of the plane $(v \times B_z \text{ with } v \text{ in }$ the xy plane remains in xy plane) but rename B_z as B, a scalar.

How about in 4D spatial dimensions?

$$F = \begin{pmatrix} -E_x & -E_y & -E_z & -E_N \\ \hline 0 & * & * & * \\ & 0 & * & * \\ & & 0 & * \\ & & & 0 \end{pmatrix}$$

So get tensor B!

It's a coincidence that in our 3D spacial world E and B are both vectors.

Let's look at $\nabla\cdot\vec{E}=\rho$ in all dimensions.

Notation: Circle S' is a 1D manifold, the boundary of a ball B^2

Sphere $S^2(R): x_1^2 + x_2^2 + x_3^2 = R^2$ Ball $B^3(R): x_1^2 + x_2^2 + x_3^2 \le R^2$

When talking about $S^2(R)$, call it S^2 (R = 1 implied) $\operatorname{Vol}(S^1) = 2\pi$ $\operatorname{Vol}(S^2) = 4\pi$ $\operatorname{Vol}(S^3) = 2\pi^2$

$$\operatorname{Vol}(S^{d-1}) = \frac{2\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})}$$

All you need to know about the Gamma function:

$$\begin{split} \Gamma(1/2) &= \sqrt{\pi} \\ \Gamma(1) &= 1 \\ \Gamma(x+1) &= x \Gamma(x) \\ \Gamma(n) &= (n-1)! \text{ for } n \in Z \\ \Gamma(x) &= \int_0^\infty dt e^{-t} t^{x-1} \text{ for } x > 0 \end{split}$$

Calculating $\nabla \cdot \vec{E}$ in d = 3 and general d dimensions. d = 3:

This represents the flux of \vec{E} through $S^2(r)$

$$E(r)\cdot \mathrm{vol}(S^2(r))=q$$

$$E(r) \cdot 4\pi r^2 = q$$
$$\boxed{E(r) = \frac{1}{4\pi} \frac{q}{r^2}}$$

This falls off much faster at large r and increases much faster as small r.

General d:

$$\int_{B^d(r)} \nabla \cdot \vec{E} d(\text{vol}) = \int_{B^d(r)} \rho d(\text{vol}) = q$$

This represents the flux of \vec{E} through $S^{d-1}(r)$

$$E(r) \cdot \operatorname{vol}(S^{d-1}(r)) = q$$
$$E(r) = \frac{\Gamma(d/2)}{2\pi^{d/2}} \frac{q}{r^{d-1}}$$

Electric field of a point charge in d dimensions.

If there are extra dimensions, then would see larger ${\cal E}$ at very small distances.