Lecture 21 - Topics

- Wrap-up of Closed Strings

Wrapup of Closed Strings

String Coupling Constant

Dimensionless number that sets the strength of the interaction.

Example of coupling constants:

1. Fine structure constant $\alpha=\frac{e^{2}}{4 \pi \hbar c} \approx \frac{1}{137}$. Derives from interactions between charged particles, magnetic fields. Could imagine particles with $e=0$.

Action $S=\int d^{p} x\left(-\frac{1}{4} F^{2}\right)-m c \int d S+e \int_{\mathcal{P}} A_{\mu(x) d x^{\mu}}$. Doesn't talk about interaction between charged particle and field (both are free).
2. Binding energy of an electron in a H atom. $E_{\text {binding }} \propto e^{4}$ since $V \propto \frac{e^{2}}{r}$ $r \approx \frac{1}{e^{2}}$ in Bohr atom.
$E_{\text {binding }}=\frac{1}{2} \alpha^{2}\left(M_{e} C^{2}\right) \approx \frac{1}{2} \frac{1}{137} 1137(500,000 \mathrm{eV}) \approx 13 \mathrm{eV}$.

Similar effect in string theory unless gravitons interacting with matter, no gravity!
D-dim Newton's Constant: $[G(D)]=L^{D-2}$ (natural units). $D=10:\left[G^{(10)}\right]=$ $L^{8} \Rightarrow G^{(10)}=g^{2}\left(\alpha^{\prime}\right)^{4}$ where g is the string coupling constant.

Planck length l_{p} related to string length $l_{s}: l_{p}^{8}=g^{2} l_{s}^{8} \Rightarrow l_{p} \approx g^{\frac{1}{4}} l_{s}$

Particle View:

String View:

Close string splits into 2 strings. Same coupling constant $g \forall$ string interactions.

g for closed strings. \sqrt{g} for open strings (too complicated for this class)

How do you fix g ?
$\phi(x)=$ dilation $\leftrightarrow a_{1}^{+I} \bar{a}_{1}^{I+}|\Omega\rangle$ massless state. $g \approx e^{\phi(x)}$. Field sets value of coupling constant. So g changes with $\phi(x)$. Not a constant, but a dynamical
value. But usually work with constant field.

4D:

$$
G^{(4)}=\frac{G^{(10)}}{V^{(6)}}=\frac{g^{2} \alpha^{\prime 4}}{V^{(6)}}=\frac{g^{2} \alpha^{\prime}}{\left(V^{(6)} / \alpha^{\prime 3}\right)}
$$

Superstrings

Everyone uses superstrings more than superstrings. Takes a long time to develop all background, so will present intuitively-reasonable results from QFT.

Pauli exclusion principle: multiple fermions cannot occupy the same state.
$X^{\mu}(\tau, \sigma)$: Classical variables. Commute $X^{I}(\tau, \sigma) X^{J}\left(\tau^{\prime}, \sigma^{\prime}\right)=X^{J}\left(\tau^{\prime}, \sigma^{\prime}\right) X^{I}(\tau, \sigma)$. The X 's behave as boson fields in (τ, σ) space.

In quantum theory, things don't quite commute. For operators A, B commutator $[A, B]=A \cdot B-B \cdot A . A$ and B commute if and only if $[A, B]=0$.

Define: $\psi_{1}^{\mu}(\tau, \sigma), \psi_{2}^{\mu}(\tau, \sigma)$. Classical, anticommuting variables $\psi_{\alpha}^{\mu}(\tau, \sigma)$.
Let B_{1}, B_{2} be classical anticommuting variables. Then $B_{1} B_{2}=-B_{2} B_{1}, B_{1} B_{1}=$ $-B_{1} B_{1} \Rightarrow B_{1} B_{1}=0$. Same for all indices.

Set of anticomm. variables B_{i} :

$$
\begin{gathered}
B_{i} B_{j}=-B_{j} B_{i} \\
B_{i} B_{i}(\text { not summed })=0
\end{gathered}
$$

Example with matrices:

$$
\gamma_{1}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

$$
\gamma_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
\gamma_{1} \gamma_{2} & =-\gamma_{2} \gamma_{1} \\
\gamma_{1} \gamma_{1} & \neq 0 \neq \gamma_{2}^{2}
\end{aligned}
$$

Quantum operators f_{1}, f_{2}

$$
\left\{f_{1}, f_{2}\right\}=f_{1} f_{2}+f_{2} f_{1}
$$

Operators anticommute if and only if $\left\{f_{1}, f_{2}\right\}=0$.

Quantized a scalar field. Got particle state of n_{k} particles

$$
\left.\left.\left(a_{p_{1}}^{+}\right)^{n_{1}}\left(a_{p_{2}}^{+}\right)^{n_{2}}\right) \ldots\left(a_{p_{k}}\right)^{+}\right)^{n_{k}}|\Omega\rangle
$$

Electron Dirac Field

$$
f_{p_{1}, s_{1}}^{+} f_{p_{2}, s_{2}}^{+} \ldots f_{p_{k}, s_{k}}^{+} \Omega
$$

p : momentum, s : spin.

Creation operators have nonzero anticomm. operators with annihilation operators. All f^{+}'s anticommute. This relates to the Pauli exclusion principle and Fermi statistics.

Action: $S=S_{\text {Bosonic }}+S_{\text {Fermionic }}$

$$
S_{B}=\frac{1}{4 \alpha^{\prime}} \int d \tau d \sigma\left(\dot{X}^{I} \dot{X}^{I}-X^{I \prime} X^{I \prime}\right)
$$

Action for LC coordinates. Tells you pretty much everything about dynamics of LC variables.

$$
S_{F}=\frac{1}{2 \pi} \int d \tau d \sigma\left[\psi_{1}^{I}\left(\frac{\partial}{\partial \tau}+\frac{\partial}{\partial \sigma}\right) \psi_{1}^{I}+\psi_{2}^{I}\left(\frac{\partial}{\partial \tau}-\frac{\partial}{\partial \sigma}\right) \psi_{2}^{I}\right]
$$

What Dirac would have written for a fermion in 2D on the worldsheet, but we can a fermion in spacetime.

Dirac equation usually written as $\psi i \gamma \partial \psi$

Usually, $A \partial_{\tau} A=\frac{1}{2} \partial_{\tau} A^{2}$ but here the $A^{\prime} s\left(\psi_{\alpha}^{I} \mathrm{~s}\right)$ are anticommuting so $A^{2}=0$.

Instead, $A \partial_{\tau} A=\partial_{\tau}(A A)-\left(\partial_{\tau} A\right) A . A \partial_{\tau} A+\left(\partial_{\tau} A\right) A=\partial_{\tau}(A A)$.

Varying $\delta \psi_{1}^{I}, \delta \psi_{2}^{I}$
$\delta S_{F}=\frac{1}{\pi} \int d \tau d \sigma\left(\delta \psi_{1}^{I}\left(\partial_{\tau}+\partial_{\sigma}\right) \psi_{1}^{I}+\delta \psi_{2}^{I}\left(\partial_{\tau}-\partial_{\sigma}\right) \psi_{2}\right)+\frac{1}{2 \pi} \int d \tau\left(\psi_{1}^{I} \delta \psi_{1}^{I}-\psi_{2} \delta \psi_{2}^{I}\right)_{\sigma=0}^{\sigma=\pi}$

$$
\begin{aligned}
& \left(\partial_{\tau}+\partial_{\sigma}\right) \psi_{1}^{I}=0 \\
& \left(\partial_{\tau}-\partial_{\sigma}\right) \psi_{2}^{I}=0
\end{aligned}
$$

$\mathrm{BC}: \psi_{1}^{I}\left(\tau, \sigma_{*}\right) \delta \psi_{1}^{I}\left(\tau, \sigma_{*}\right)-\psi_{2}^{I}\left(\tau, \sigma_{*}\right) \delta \psi_{2}^{I}\left(\tau, \sigma_{*}\right)=0$

$$
\begin{aligned}
& \psi_{1}^{I}=\Psi_{1}^{I}(\tau-\sigma) \\
& \psi_{2}^{I}=\Psi_{2}^{I}(\tau+\sigma)
\end{aligned}
$$

$$
\psi_{1}^{I}\left(\tau, \sigma_{*}\right)= \pm \psi_{2}^{I}\left(\tau, \sigma_{*}\right)
$$

Satisfies BC without too much violence.

$$
\delta \psi_{1}^{I}\left(\tau, \sigma_{*}\right)= \pm \delta \psi_{2}^{I}\left(\tau, \sigma_{*}\right)
$$

$\sigma=0:$

$$
\psi_{1}^{I}(\tau, 0)= \pm \psi_{2}^{I}(\tau, 0)
$$

Choose sign to be positive since action doesn't care, but then can't change sign of field. We have two choices:

$$
\psi_{1}^{I}(\tau, \pi)=+\psi_{2}^{I}(\tau, \pi)
$$

or

$$
\begin{gathered}
\psi_{1}^{I}(\tau, \pi)=-\psi_{2}^{I}(\tau, \pi) \\
\Psi_{I}(\tau, \sigma)= \begin{cases}\psi_{1}^{I}(\tau, \sigma) & \sigma \in[0, \pi] \\
\psi_{2}^{I}(\tau,-\sigma) & \sigma \in[-\pi, 0]\end{cases}
\end{gathered}
$$

Continuous field over $[-\pi, \pi]$ since $\psi_{1}^{I}(\tau, 0)=\psi_{2}^{I}(\tau, 0)$

$$
\Psi^{I}(\tau, \pi)=\psi_{1}^{I}(\tau, \pi)= \pm \psi_{2}^{I}(\tau, \pi)= \pm \Psi(\tau,-\pi)
$$

Ψ fermion field is periodic if choose positive sign, antiperiodic if choose negative sign.

Suppose choose periodic (Rammond sector)

$$
\Psi(\tau, \sigma)=\sum_{n \in Z} d_{n}^{I} e^{-i n(\tau-\sigma)}
$$

Suppose choose antiperiodic (Neveu-Schawrz sector)

$$
\Psi^{I}(\tau, \sigma)=\sum_{r \in Z+\frac{1}{2}} b_{r}^{I} e^{-i r(\tau-\sigma)}
$$

