Lecture 2 - Topics

- Energy and momentum
- Compact dimensions, orbifolds
- Quantum mechanics and the square well

Reading: Zwiebach, Sections: 2.4-2.9

$$
x^{ \pm}=\frac{1}{\sqrt{2}}\left(x^{0} \pm x^{1}\right)
$$

x^{+}l.c. time
Leave x^{2} and x^{3} untouched.

$$
\begin{aligned}
-d s^{2} & =-\left(d x^{0}\right)^{2}+\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2} \\
& =\eta_{\mu v} d x^{\mu} d x^{v}
\end{aligned}
$$

$$
u, v=0,1,2,3
$$

$$
\begin{aligned}
& 2 d x^{+} d x^{-}=\left(d x^{0}+d x^{1}\right)\left(d x^{0}-d x^{1}\right) \\
& =\left(d x^{0}\right)^{2}-\left(d x^{1}\right)^{2} \\
& -d s^{2}=-2 d x^{+} d x^{-}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2} \\
& =\hat{\eta}_{\mu v} d x^{\mu} d x^{v}
\end{aligned}
$$

$$
\begin{gathered}
u, v=+,-, 2,3 \\
\hat{\eta}_{\mu \nu}=\left[\begin{array}{cc|cc}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
\hat{\eta}_{++}=\hat{\eta}_{--}=\hat{\eta}_{+I}=\hat{\eta}=-I \\
I=2,3 \\
\hat{\eta}_{+-}=\hat{\eta}_{-+}=-1 \\
\eta_{22}=\eta_{33}=1
\end{gathered}
$$

Given vector a^{μ}, transform to:

$$
a^{ \pm}:=\frac{1}{\sqrt{2}}\left(a^{0} \pm a^{1}\right)
$$

Einstein's equations in 3 space-time dimensions are great. But 2 dimensional space is not enough for life. Luckily, it works also in 4 dimensions (d5, d6, ...). Why don't we live with 4 space dimensions?
If we lived with 4 space dimesnions, planetary orbits wouldn't be stable (which would be a problem!)

Maybe there's an extra dimension where we can unify gravity and ...
Maybe if so, then the extra dimensions would have to be very small - too small to see.

String theory has extra dimensions and makes theory work. Though caution: this is a pretty big leap.

Trees in a Box

Look at trees in a box

Move a little and see another behind it

In fact, see ∞ row that are all identical! Leaves fall identically and everything.

Dot Product

$$
\begin{aligned}
a \cdot b & =-a^{\circ} b^{\circ}+\sum_{i=1}^{3} a^{i} b^{i} \\
& =-a^{+} b^{-}-a^{-} b^{+}+a^{2} b^{2}+a^{3} b^{3} \\
& =\hat{\eta}_{\mu \nu} a^{\mu} b^{\nu}
\end{aligned}
$$

$$
\begin{aligned}
a_{\mu} & =\hat{\eta}_{\mu \nu} a^{\nu} \\
a_{+}=\hat{\eta}_{+\nu} a^{\nu} & =\hat{\eta}_{+-} a^{-}=-a^{-}
\end{aligned}
$$

$$
a_{+}=-a^{-}
$$

$$
a_{-}=-a^{+}
$$

$$
v_{l c}=\frac{d x^{-}}{d x^{+}}
$$

Light rays a bit like in Galilean physics - go from 0 to ∞.

Energy and Momentum

Event 1 at x^{μ}
Event 2 at $x^{\mu}+d x^{\mu}$ (after some positive time change)
$d x^{\mu}$ is a Lorentz vector

The dimension along the room, row is actually a circle with one tree, so not actually infinity.

See light rayws that goes around circle multiple times to see multiple trees.
Crazy way to define a circle

This circle is a topological circle - no "center", no "radius"
Identify two points, P_{1} and P_{2}. Say the same $\left(P_{1} \approx P_{2}\right)$ if and only if $x\left(P_{1}\right)=$ $x\left(P_{2}\right)+(2 \pi R) n(n \in Z)$

Write as:

$$
x \approx x+(2 \pi R) n
$$

Define: Fundamental Domain $=$ a region sit.

1. No two points in it are identified
2. Every point in the full space is either in the fundamental domain or has a representation in the fundamental domain.

So on our x line, we would have:

$$
\begin{aligned}
-d s^{2} & =-c^{2} d t^{2}+(d \vec{x})^{2} \\
& =-c^{2} d t^{2}+v^{2}(d t)^{2} \\
& =-c^{2}\left(1-\beta^{2}\right)(d t)^{2}
\end{aligned}
$$

$d s^{2}$ is a positive value so can take square root:

$$
d s=\sqrt{1-\beta^{2}} d t
$$

In to co-moving Lorentz frame, do same computation and find:

$$
-d s^{2}=-c^{2}\left(d t_{p}\right)^{2}+(d \vec{x})^{2}=-c^{2}\left(d t_{p}\right)^{2}
$$

$d t_{p}$: Proper time moving with particle. Also greater than 0.

$$
\begin{aligned}
& d s=c d t_{p} \\
& \frac{d x^{\mu}}{d s}=\text { Lorentz Vector }
\end{aligned}
$$

Define velocity u-vector:

$$
u^{\mu}=\frac{c d c x^{\mu}}{d x}
$$

Definite momentum u-vector:

$$
\begin{gathered}
p^{\mu}=m u^{\mu}=\frac{m}{\sqrt{1-\beta^{2}}} \frac{d x^{\mu}}{d t}=m \gamma \frac{d x^{\mu}}{d t} \\
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}
\end{gathered}
$$

Rule to get the space we're trying to construct:
Take the $f \cdot d$, include its boundary, and apply the identification

Note: Easy to get mixed up if rule not followed carefully.
Consider \Re^{2} with 2 identifications:

$$
\begin{aligned}
& (x, y) \approx\left(x+L_{1}, y\right) \\
& (x, y) \approx\left(x, y+L_{2}\right)
\end{aligned}
$$

Blue: Fundamental domain for first identification
Red: Fundamental domain for second identification

Torus

$$
\begin{aligned}
p^{\mu} & =m \gamma\left(\frac{d x^{0}}{d t}, \frac{d \vec{x}}{d t}\right) \\
& =(m c \gamma, m \gamma \vec{v}) \\
& =\left(\frac{E}{c}, \vec{p}\right)
\end{aligned}
$$

E : relativistic energy $=\frac{\mu c^{2}}{\sqrt{1-\beta^{2}}}$
\vec{p} : relativistic momentum

Scalar:

$$
\begin{aligned}
p^{\mu} \cdot p_{\mu} & =\left(p^{0}\right)^{2}+(\vec{p})^{2} \\
& =-\frac{E^{2}}{c^{2}}+\vec{p}^{2} \\
& =-\frac{m^{2} c^{2}}{1-\beta^{2}}+\frac{m^{2} v^{2}}{1-\beta^{2}} \\
& =-m^{2} c^{2}\left(\frac{1-\beta^{2}}{1-\beta^{2}}\right) \\
& =-m^{2} c^{2}
\end{aligned}
$$

Every observer agrees on this value.

Light Lone Energy

$x^{0}=$ time, $\frac{E}{c}=p^{0}$
$x^{+}=$time, $\frac{E_{l c}}{c}=p^{+} ?-$ - Nope!
Justify using QM: $\Psi(t, \vec{x})=e^{\frac{-i}{h}\left(E t-\overrightarrow{p_{0}} \vec{x}\right)}$
Can think of the IDs as transformations - points "move." Here's something that "moves" some points but not all.

Orbfolds

1.

ID: $x \approx-x$
FD:

Think of ID as transformation $x \rightarrow-x$
This FD not a normal 1D manifold since origin is fixed. Call this half time \Re / Z_{z} the quotient.
2.

ID: $x \approx x$ rotated about origin by $2 \pi / n$
In polar coordinates:

$$
\begin{gathered}
z=x+i y \\
z \approx e^{\left(\frac{2 \pi i}{n}\right) z}
\end{gathered}
$$

Fundamental domain can be chosen to be:

Cone!
We focus on these two since quite solvable in string theory.

$$
\hat{\vec{p}}=h \nabla / i
$$

SE:

$$
\begin{aligned}
i h \frac{\partial \Psi}{\partial x^{0}} & =\frac{E}{c} \Psi \\
\frac{i h}{c} \frac{\partial}{\partial t} \Psi & =E \Psi
\end{aligned}
$$

So for our x^{+}, want $i h \frac{\partial \Psi}{\partial x^{+}}=E_{l c} c \Psi$

$$
\begin{aligned}
E t-\vec{p} \cdot \vec{x} & =-\left(-\frac{E}{c} c t+\vec{p} \cdot \vec{x}\right) \\
& =-p \cdot x \\
& =-\left(p_{+} x^{+} p_{-} x^{-}+\ldots\right)
\end{aligned}
$$

Now have isolated dependence on x^{+}, so can take derivative:

$$
\begin{gathered}
\Psi=e^{\frac{+i}{h}}\left(p_{+} x^{+}+\ldots\right) \\
i h \frac{\partial \Psi}{\partial x^{+}}=-p_{+} \Psi
\end{gathered}
$$

So:

$$
\frac{E_{l c}}{=}-p_{+}=p^{-}
$$

Suppose have line segment of length a. Particle constrained to this:

Compare to physics of world with particle constrained to thin cylinder of radius R and length a (2D)

Can be defined as:

with ID $(x, y) \approx(x, y+2 \pi R)$
So:

$$
S E=\frac{-h^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)=E \Psi
$$

1.

$$
\begin{gathered}
\Psi_{k}=\underbrace{} \sin \left(\frac{k \pi x}{a}\right) \\
E_{k}=\frac{h^{2}}{2 m}\left(\frac{k \pi}{a}\right)^{2}
\end{gathered}
$$

2.

$$
\begin{aligned}
& \widetilde{\Psi}_{k, l}=\underbrace{\sim} \sin \left(\frac{k \pi x}{a}\right) \cos \left(\frac{l y}{R}\right) \\
& \Psi_{k, l}=\underbrace{\sim} \sin \left(\frac{k \pi x}{a}\right) \sin \left(\frac{l y}{R}\right)
\end{aligned}
$$

If states with $l=0$ then get same states as case 1 , but if $l \neq 0$ get different E value from $\left(\frac{l}{R}\right)^{2}$ contribution. Only noticeable at very high temperatures.

