Lecture 19 - Topics

- Critical Dimension
- Constructing the State Space
- Tachyons

In the middle of quantizing the open string:

$$
\begin{gathered}
\alpha_{n}^{-}=\frac{1}{\sqrt{2 \alpha^{\prime}} \frac{1}{p^{+}} L_{n}^{\perp}} \\
p^{-}=\frac{1}{2 p^{+} \alpha^{\prime}}\left(L_{0}^{\perp}+a\right)
\end{gathered}
$$

What is $a ? a$ is arbitrary for now.

$$
\begin{gathered}
H=2 p^{+} p^{-} \alpha^{\prime}=L_{0}^{\perp}+a \\
L_{0}^{\perp}=\alpha^{\prime} p^{I} p^{I}+N^{\perp} \\
N^{\perp}=\sum_{k=1}^{\infty} k \underbrace{a_{k}^{I+} a_{k}^{I}}_{\text {Implicit sum over } I} \quad \text { (Number operator) } \\
{\left[N^{\perp}, a_{\eta}^{J+}\right]=n a_{\eta}^{J+}} \\
M^{2}=-p^{2}=2 p^{+} p^{-}-p^{I} p^{I}=\frac{1}{\alpha^{\prime}}\left(L_{)}^{\perp}+a\right)-p^{I} p^{I}=\frac{1}{\alpha^{\prime}}\left(a+N^{\perp}\right) \\
{\left[L_{m}^{\perp}, L_{n}^{\perp}\right]=(m-n) L_{m+n}^{\perp}+\frac{D-2}{12} m\left(m^{2}-1\right) \delta_{m+n, 0}}
\end{gathered}
$$

With a lie algebra:

$$
\begin{gathered}
{\left[A_{1}\left[B_{1} C\right]\right]+\left[B_{1}\left[C_{1} A\right]\right]+\left[C_{1}\left[A_{1} B\right]\right]=0} \\
{\left[L_{m}^{+}, X^{I}(\tau, \sigma)\right]=\xi_{m}^{\tau} \dot{X}^{I}+\zeta_{m}^{\sigma} X^{\prime I}} \\
\zeta_{m}^{\tau}(\tau, \sigma)=-i e^{(i m \tau)} \cos (m \sigma) \\
\zeta_{m}^{\sigma}(\tau, \sigma)=e^{(i m \tau)} \sin (n \sigma)
\end{gathered}
$$

$$
\begin{gathered}
\zeta_{0}^{\sigma}=0, \zeta_{0}^{\tau}=-i \\
{\left[L_{0}^{\perp}, X^{I}(\tau, \sigma)\right]=-i \dot{X}^{I}} \\
i \partial_{\tau} \zeta=[\zeta, H]
\end{gathered}
$$

Reparameterization of worldsheet:

$$
X^{I}\left(\tau+\zeta_{m}^{\tau}, \sigma+\zeta_{m}^{\sigma}\right)=X^{I}(\tau, \sigma)+\underbrace{\zeta_{m}^{\tau} \dot{X}^{I}+\zeta_{m}^{\sigma} X^{\prime I}}_{\left[L_{m}^{\perp}, X^{I}\right]}
$$

Critical Dimension

For a long time, wrote equations assuming $D=4$. But came across problems in the quantum theory. Lovelace found some problems went away when $D=26$ (considered a bad joke then)

Lorentz Charge:

$$
\begin{aligned}
M^{\mu \nu} & =\int_{0}^{\pi} d \sigma\left(X_{\mu} \mathcal{P}_{\mu}^{\tau}-X_{\mu} \mathcal{P}_{\mu}^{\tau}\right) \\
& =\frac{1}{2 \pi \alpha^{\prime}} \int_{0}^{\pi} d \sigma\left(X_{\mu} \dot{X}_{\nu}-X_{\nu} \dot{X}_{\mu}\right) \\
& =X_{0}^{\mu} p^{\nu}-X_{0}^{\nu} p^{\mu}-i \sum_{n=1}^{\infty} \frac{1}{n}\left(\alpha_{-n}^{\mu} \alpha_{n}^{\mu}-\alpha_{-n}^{\nu} \alpha_{n}^{\mu}\right)
\end{aligned}
$$

Calculation sketched in book.

$$
\begin{gathered}
{\left[M^{-I}, M^{-I}\right]=0} \\
M^{-I}=\left.M^{\mu \nu}\right|_{\mu=-, \nu=I}=\underbrace{X_{0}^{-} p^{I}}_{\text {Hermitian }}-\underbrace{X_{0}^{I} p^{-}}_{\text {Not Hermitian }}-\underbrace{i \sum_{n=1}^{\infty} \frac{1}{n}\left(\alpha_{-n}^{-} \alpha_{n}^{I}-\alpha_{-n}^{I} \alpha_{n}^{-}\right)}_{\text {Hermitian }}
\end{gathered}
$$

Rearrange so everything Hermitian:

$$
M^{-I}=X_{0}^{-} p^{I}-\frac{1}{4 p^{+} \alpha^{\prime}}\left(X_{0}^{I}\left(L_{0}^{\perp}+a\right)+\left(L_{0}^{\perp}+a\right) X_{0}^{I}\right)-\frac{1}{\sqrt{2 \alpha^{\prime}}} \frac{1}{p^{+}} \sum_{n=1}^{\infty} \frac{1}{n}\left(L_{-n}^{\perp} \alpha_{n}^{I}-\alpha_{-n}^{I} L_{n}^{\perp}\right)
$$

$$
\left[M^{-I}, M^{-I}\right]=\alpha^{\prime} p^{+2} \sum_{m=1}^{\infty}\left(\alpha_{-m}^{I} \alpha_{m}^{J}-\alpha_{-m}^{J} \alpha_{m}^{I}\right) \cdot \underbrace{\left(m\left(1-\frac{1}{24}(D-2)\right)\right.}_{\text {"A" }})+\underbrace{\frac{1}{m}\left(\frac{1}{24}(D-2)+a\right)}_{\text {"B" }}
$$

$$
\begin{aligned}
m A+\frac{1}{m} B & =0 \quad m=1,2,3,4,5 \ldots \\
m & =1: A+B=0 \\
m & =2: 2 A+\frac{1}{2} B=0
\end{aligned}
$$

$A=0, B=0:$

$$
\begin{gathered}
\frac{D-2}{24}=1 \Rightarrow D=26 \\
\frac{(26-2)}{24}+a=0 \Rightarrow a=-1 \\
H=2 p^{+} p^{-} \alpha^{\prime}=L_{0}^{\perp}-1 \\
M^{2}=\frac{1}{\alpha^{\prime}}(-1+N)^{\perp}
\end{gathered}
$$

Einstein's theory makes sense in any number of dimensions. String theory fixes the dimension. No one really knows whether this 26-dimensional theory has anything to do with the 10 - or 11-dimensional theory. What is a Kaluza-Klein Tower of States?

Constructing the State Space

Operators: $x_{0}^{I}, p^{I}, x_{0}^{-}, p^{+}, a_{n}^{I}, a_{n}^{I+}$

$$
\left|p^{+}, \vec{p}_{\tau}\right\rangle(\text { Ground states } \forall \text { values of momenta) }
$$

By definition, annihilated by a_{n}^{I} :

$$
\begin{gathered}
a_{n}^{I}\left|p^{+}, \vec{p}_{\tau}\right\rangle=0 \quad n=1,2,3, \ldots \\
M^{2}\left|p^{+}, \vec{p}_{\tau}\right\rangle=\frac{1}{\alpha^{\prime}}\left|p^{+}, \vec{p}_{\tau}\right\rangle \text { Scalar field of } M^{2}=\frac{1}{-\alpha^{\prime}} \\
\left|p^{+}, \vec{p}_{\tau}\right\rangle \leftrightarrow \text { Scalar Field } \\
\left|p^{+}, p_{\tau}\right\rangle:\left(\begin{array}{cccc}
a_{1}^{(2)+} & a_{1}^{(3)+} & \cdots & a_{1}^{(25)+} \\
a_{2}^{(2)+} & a_{2}^{(3)+} & \cdots & a_{2}^{(25)+} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n}^{(2)+} & a_{1}^{(3)+} & \cdots & a_{1}^{(25)+}
\end{array}\right)
\end{gathered}
$$

General basis state of the state space:

$$
|\lambda\rangle=\prod_{n=1}^{\infty} \prod_{I=2}^{25}\left(a_{n}^{I+}\right)^{\lambda_{n, I}}\left|p^{+}, \widetilde{p}_{\tau}\right\rangle
$$

$\lambda_{n, I}$ integers ≥ 0
$\forall n \geq 1, I=2, \ldots, 25$.

To make mathematicians happy, restrict to case where states have only finite number of creation operations acting on the ground states.
$\forall|\lambda\rangle \exists$ only finite number of $\lambda_{n, I} \neq 0$.

String Hilbert space $=$ infinite-dimension vector space (spanned by infinite set of linearly-independet basis $|\lambda\rangle$'s)

String theory describes an infinite number of different particles.
$N^{\perp}=1:$

$$
\begin{gathered}
a_{\perp}^{I+}\left|p^{+}, \vec{p}_{\tau}\right\rangle \xrightarrow{D-2 \text { states }} a_{p^{+}, p_{\tau}}^{I+}|\Omega\rangle \\
M^{2}=\frac{1}{\alpha^{\prime}}(-1+\underbrace{N^{\perp}}_{=1})=0
\end{gathered}
$$

One-photon massless states! (Only massless bosons are photons). Started with classical strings, quantized them, and out popped photons!

Will do the same with closed strings to get gravitons.
$N^{\perp}=2:$

$$
\underbrace{a_{1}^{I+}, a_{1}^{J+}\left|p^{+}, p_{\tau}\right\rangle}_{324 \text { states }}, a_{2}^{I+}\left|p^{+}, p_{\tau}\right\rangle
$$

Symmetric, traceless tensor in $D-1$ dimensions.

Tachyons:

The more mass (up to the y axis), the less relevant it is to observed particle physics.

So might turn out that tachyons are the most relevant particles.
D-branes are made of tachyons! (Maybe)

$$
V(\phi)=\frac{1}{2} M^{2} \phi^{2}+\theta\left(\phi^{3}\right)
$$

Instead of saying tachyons are massles, go faster than speed of light, etc. Think of tachyons as an instability.
Instability in ... what? The D-branes (1999).
Too difficult to compute beyond T_{25}.

Tachyon Conjecture:
Zwiebach et al used computer simulations to get very high probability approximations.

Dec 2005: Analytic solution found. Energy exactly right. Tachyon conjecture verified: Tachyon instability is the instability of the D-brane and if it "rolls down" it destroys the D-brane.

D-brane collsions related to inflation? Maybe.

